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ABSTRACT
Facial paralysis makes patients lose their facial movements,
which can incur eye damage even blindness since patients are
incapable of blinking. The paralysis usually occurs on just
one side of the face, and clinical trials show that electrical
stimulation could trigger blink. Based on such observations,
we design and implement a pair of smart glasses iBlink to
assist facial paralysis patients to blink. The basic idea is
to monitor the normal side of the face with a camera and
stimulate the paralysed side, so that the blink of the both
eyes become symmetric. To the best of our knowledge, this is
the first piece of wearable device for facial paralysis therapy.

Our contributions are: First, we propose an eye-blink de-
tection mechanism based on deep convolutional neural net-
work (CNN), which can detect asymmetric blinks of pa-
tients under various illumination conditions with an accu-
racy above 99%. Our eye-image library for training CNN
models is published online for further related studies, which
contains more than 30, 000 eye images. Second, we design
and implement an automatic stimulation circuits to generate
electrical impulse for stimulating the patient’s facial nerve
branches, which can configure operational parameters in a
self-adaptive manner for different patients. Third, we im-
plement the entire iBlink system, which integrates the two
functions above and a communication function module for
tele-medicine applications. Moreover, we conduct clinical
trials in a hospital, in order to obtain the design basis and
verify effectiveness of our device.

CCS Concepts
•Computer systems organization → Sensors and actu-
ators;
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1. INTRODUCTION
Facial paralysis is a disease making people losing facial

movements, which is caused by nerve damage. People suf-
fering from facial paralysis usually have muscles on one side
of the face noticeably droop, which seriously impacts the
person’s quality of life. What is worse, facial paralysis can
incur eye damage even blindness, because the eyelid on the
affected side can not fully close, which makes the eye dry and
infected by debris. The most common form of facial paral-
ysis is known as Bell’s palsy, which impacts 40, 000 people
in U.S. each year, where the typical symptom is the muscle
dysfunction on one side of the face [1, 27].

Most Bell’s palsy patients will completely recover in around
6 months with or without medical treatment; however, a
few cases of facial paralysis patients could never completely
return to normal. The current treatments for Bell’s palsy
include drugs and surgery, which is of side effect and con-
troversial, respectively [1].

Efforts have been dedicated to find the cause of Bell’s
palsy; however, the exact cause is still unknown [1]. To
the best of scientists’ knowledge, the paralysis is due to the
pressure incurred by infection in the tunnel containing main
trunk of facial nerves, where the tunnel is inside of the peo-
ple’s head termed as the Facial canal. An interesting phe-
nomenon corroborating the theory is: using electric current
of 3 − 11mA to stimulate the facial nerve branches could
make the eye closing for most of patients, which indicates
that the facial muscle and nerve branches are still working.

In this paper, we propose to use wearable device to im-
prove the facial paralysis patient’s quality of life. In partic-
ular, we design and implement a pair of smart glasses iBlink
to assist facial paralysis patients to blink. To the best of
our knowledge, this is the first piece of wearable device for
facial paralysis therapy. The basic idea of iBlink is to moni-
tor the normal side of the face with a camera and stimulate
the paralysed side, so that the blink of both sides of the
face could become symmetric. As wearable devices such as
Google glass are widely accepted, wearing iBlink could con-
ceal the patient’s defect and help them live like a normal
people. Our contributions are as following:

First, we propose an eye-blink detection mechanism based
on convolutional neural network (CNN), which can detect
not only movements of eyes such as closing, opening and
blink but also asymmetric blinks of facial paralysis patients
under various lighting conditions even at night (§4.2). We
collected more than 26, 000 eye images under different illu-
mination conditions and more than 7, 750 images under in-
frared (IR) lights from 12 different people to train the CNN

359



models. The detection accuracies for daytime and night-
time are both above 99%. We publish the image library to
support further related studies on facial paralysis [2].

Second, we design and implement an automatic stimula-
tion circuits to generate electrical impulse for stimulating
the user’s facial nerve branches (§5). The circuits are con-
trolled by a self-adaptive control mechanism, which accom-
modates individual and environment diversity. In particular,
the circuit can elevate stimulation level incrementally until
an appropriate level is found for a specific user. We also im-
plement a pain control protection scheme, so that the possi-
ble pain incurred by over stimulation can be avoided (§6.1);
moreover, the circuits can also automatically switch to dif-
ferent modes according to illumination conditions (§6.1).
Further, we develop an approach to derive a person’s blink
frequency, so that the sampling frequency for anomaly detec-
tion can be adjusted for power saving (§6.2). Experiments
show that the iBlink system could continuously work in the
highest power consumption level for at least 10 hours with
a lithium battery pack.

Third, we implement the entire iBlink system, which in-
tegrates the mechanism mentioned above and a communi-
cation function module for tele-medicine applications (§7).
The related computing and control mechanisms are hosted
in a Raspberry PI Zero [35] platform, which connects other
hardware components such as camera and stimulation cir-
cuits. We conduct clinical trials in a hospital with our de-
vice, which enables us to obtain the design basis of iBlink
and verify the effectiveness of our device (§9.4).

2. BACKGROUND AND MOTIVATION
Facial paralysis. A person’s facial muscles are controlled

by facial nerves, and a facial paralysis sufferer has a dysfunc-
tion in the facial nerve system, thus loses the facial move-
ments. The left part of Fig. 1 shows a man with Bell’s palsy
on his right side of the face tries to raise his eyebrows and
show his teeth [3]. It is clear that the facial muscles on his
right side of face cannot move. The right part of Fig. 1 shows
the anatomy of facial nerves based on [4]. The yellow and
orange curves represent facial nerves of the left and right
side of the face, respectively. The lesions typically occur
at or beyond the stylomastoid foramen to the facial canal,
which is a canal between the stylomastoid foramen and the
internal acoustic meatus as shown in the right part of Fig. 1.
Facial nerve branches are usually still working.

Figure 1: Anatomy of facial nerves.

The basic aim of facial rehabilitation is facial symmetry
at rest and when facial expressions are performed [21]. Eye
protection plays a crucial role, since patients could not blink,
which makes the eye lack of moisture and protection. The

incurred complications such as corneal ulcer and lagophthal-
mos could further cause blindness. In clinical cases, doc-
tors provide different treatments especially towards eye care
based on an individual’s expectation for recovery, degree of
risk to the cornea and eye weakness [1, 9, 22].

Since a majority of Bell’s palsy patients will completely
recover in around 6 months, they normally take supportive
measures, which include lubrication with artificial tears, oc-
ular ointments and taping of the eyelid [30]. However, mois-
ture chemicals has high risk of surface toxicity and tapes may
touch the cornea or conjunctiva, which incur further trauma.
Static or dynamic surgical procedures could be operated on
prolonged and permanent paralysis sufferers. Nevertheless,
such procedures involve complicated medical techniques and
complications, which increase pain of patients [24,28,29,31].

Electrical stimulation. Transcutaneous electrical stim-
ulation (TENS) is taken by physiotherapists as an option
for enhancing recovery in patients with facial paralysis [6,7,
10], which is to apply electrical stimulation to facial nerves
without breaking the facial skin. The electrical stimulation
has been proved safe and does not interfere with recovery
[6, 11,25].

An interesting observation of electrical stimulation is: the
appropriate electrical stimulation could make people blink
if the facial nerve branches are not damaged. We conduct
an experiment in a hospital to verify the effect, as shown
in Fig. 2. The device in the left sub-figure is a Medtronic
Keypoint electromyography (EMG) workstation [8], which is
used to evaluate and record the electrical activity produced
by skeletal muscles. The EMG workstation can generate
electric current impulses, which can be directed to the per-
son’s facial skin through a pair of electrodes as shown in the
middle sub-figure. By appropriately configure the strength,
width and frequency of the impulse, the impulse can induce
a person with functional facial nerve branches to blink as
shown in the right sub-figure, where the right eye of the
person is smaller than the left one as the right eye is to
blink when the picture is taken.

Figure 2: Electrical stimulation induced blink.

Motivation. Our work in this paper is motivated by
the electrical stimulation approach for facial paralysis treat-
ment, and the observations of facial paralysis’ characteris-
tics. Since paralysis usually occurs in one side of the face
and the facial nerve branches are usually functioning, we
could use electrical stimulation to make the paralyzed side
to move accordingly to make the both sides of the face sym-
metric. In particular, the electrodes could be applied to
nerve branches controlling blinks, so that the eye damage
could be avoided. These functions could be implemented in
a wearable smart glasses for the user’s convenience, which
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could improve their quality of life before the paralysis goes
away completely. Moreover, the electrical stimulation ap-
proach is non-invasive, thus the device could be considered
as health care products as facemasks according to the FDA
regulations [5], which avoids the all-consuming license appli-
cation procedures for implanting devices.

3. DESIGN AND CHALLENGES
The architecture design of iBlink is shown in Fig. 3, which

includes hardware and software function modules.
Hardware. A camera is installed in front of the eyes to

monitor blinks in real time. The eye camera captures images
of both eyes and send them to the Raspberry PI Zero plat-
form, which also monitors the ambient lighting condition.
The Raspberry PI Zero and stimulation circuits are located
on the patient’s paralyzed side of the face. In particular,
the Raspberry PI Zero and stimulation circuits are in the
outer side of the glass frame, and two stimulating electrodes
are in the inner side of the frame pressing on the patient’s
facial skin. The Raspberry PI Zero has Wi-Fi and Blue-
tooth interfaces which can be utilized for communication
with smartphones. A power unit supports both the process-
ing platform and the stimulation circuits. Our circuits also
contain a potentiometer as the pain switch, which could fine-
tuning the automatic stimulation level control scheme. This
is to accommodate individual diversity in case of discomfort.

Figure 3: Design of the iBlink system

Software. The software consists of four layers: input
layer, processing layer, execution layer and communication
layer. The input layer receives the input images and ambient
illumination data from the camera and pain control action
from the pain switch. The images and illumination data
are sent to the processing layer for operation model selec-
tion, blink detection, anomaly detection and blink frequency
calculation. The execution layer contains stimulation con-
trol and sampling control. The stimulation control takes in
the result of detections and calculations from the processing
layer to adjust the electric stimulation parameters for the pa-
tient automatically. It also responds to patients’ actions on
the pain switch. The sampling control takes in results from
the processing layer and adjusts the sampling frequency of
the camera. When a doctor needs to acquire the patient’s
pathology data or the patient needs to report the pathol-
ogy records, they can transmit data via the communication
layer. The communication layer can support both Wi-Fi
and Bluetooth transmissions.

Challenges. First, the system has to accommodate indi-
vidual diversity. The EMG clinical trials show that different
patients require different configurations of the stimulation
impulse to enable blinking. The blink frequencies of differ-
ent people also vary, which makes efficient blinking detec-
tion difficult. Moreover, the paralysis could make muscles
around the eye droop in different degrees for different pa-
tients, which also incurs difficulties for detecting asymmetric
blinks.

Second, the system has to accommodate environment chang-
ing. The patient’s current conditions are monitored by the
camera, thus illumination conditions could significantly in-
fluence the accuracy of the detection layer; however, the
illumination conditions could change due to people’s mobil-
ity and time changing. Such an un-static factor also imposes
the challenge to facial expression detection.

Third, the system has to be power efficient. This is the
challenge for all mobile devices. In our case, we need to lower
the frequency of the power-consuming electrical impulses as
much as possible. The stimulation circuits generate elec-
trical impulses at the frequency of blink detection, while
the camera has to monitor movements of the eyes at a high
sampling rate to avoid information loss, which makes the
sampling control a difficult trade-off and the power saving a
noticeable challenge.

4. FACIAL IMAGE PROCESSING

4.1 Working Procedure
Facial image processing provides basis for blink detection,

anomaly detection and blink frequency calculation, where
the procedure is shown in Fig. 4. The system needs to detect
whether an eye is blinking. The event that the healthy eye
is blinking and the other eye is not can be detected by the
anomaly detection module, which initiates the stimulation
circuits. By analyzing the sequence of blink detection, the
system could estimate the patient’s blink frequency, so that
an appropriate sampling frequency for the camera could be
obtained.

Figure 4: Workflow of facial image processing

In particular, we use two fixed windows to cut the single-
eye images from the camera input for each image frame cap-
tured by the eye camera. We train the CNN model with
images of the left eye and the right-to-left flip of the right
eye, so that we could use just one CNN model to detect
status of two eyes. Considering different illumination con-
ditions, we train two CNN models for daytime and night-
time with IR scenarios. The model selector is to decide the
images are to be processed by the model for which illumi-
nation condition. We find the threshold of model selection
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through experiments, which are to be introduced in Section
9 in detail. With the extracted CNN features, we implement
a classifier acting as a solver of the two-class classification
problem, which labels 0 as eye closure and 1 as eye open-
ing. A sequence of such labels could be used for detecting
different events.

4.2 Deep Convolutional Neural Network
We use deep learning for image processing due to its ro-

bustness. Facial paralysis patients’ eyes could sometimes be
half-way open, slanted or in other more complicated shapes,
thus eye images with the same ‘open’ label can vary greatly.
Moreover, illumination, personal difference and expression
can add diversity to eye images, making labeling eye images
more difficult. Since high precision for our medical device is
a must, we need a robust model to achieve high accuracy and
high computation efficiency with different persons and un-
der different conditions. Considering such requirements, we
choose deep convolutions neural network (CNN) [17]. The
details of our CNN network structure is shown in Fig. 5. We
train our CNN using the deep learning framework Caffe [14].

Figure 5: CNN structure

Our CNN consists of three convolutional layers and one
fully connected layer. Each convolutional layer is followed by
a max-pooling layer. For each convolutional layer we extract
the convolved feature of previous layer’s output with a linear
filter. We apply multiple filters with weights W k and bias
bk to obtain multiple feature maps. For each feature map
F k at layer k, its values are obtained by:

F k
ij = σ(W k × xij + bk), (1)

where σ is a non-linear operator and xij is the input. Af-
ter the convolutional layer, each feature map is sampled
by the pooling layer to lower the dimension. We use the
max-pooling with a non-overlapping manner. We also use
ReLU [15] layers after every convolutional layer and dropout
[16] layer after the third convolutional layer to improve the
performance. After extracting robust features, the Softmax
Loss layer computes the probability vector for classifying the
images. The input for our CNN is 40×40 single-eye images.

In order to reduce the effect of local expression and per-
sonal difference in eye shapes, and to cover different illu-
mination conditions the patients will encounter in different
daily scenarios, we collected 16,951 eye images under differ-
ent daylight condition and 5,750 images under IR lights from
12 different people to train the CNN models. Due to the fa-
cial symmetry, we mirrored the eye images to augment the
dataset and yield 33,902 training images. We used 10% of
the training data for cross validation and the other 90% for
training the deep convolutional neural networks. The train-
ing accuracies for daytime and nighttime model are 99.5%

and 99.1%, respectively. We also collected another 12,000
eye images under 6 different illumination conditions for test-
ing the two CNN models. The testing accuracies will be
shown in the performance evaluation section.

4.3 Blink Detection and Anomaly Detection
After we have the eye status sequence, we define a blink

sequence as a short status sequence in the form of ‘1,0,1’,
which means the eye opens, then closes and opens again.
Since a normal blink takes about 200ms to 400ms and our
sampling rate is 20 to 30 frames per second, there could be
multiple frames captured in a normal blink process. Multi-
ple 1s and 0s can appear in a blink sequence, e.g., ‘1100011’.
The adjustable sampling rate of iBlink ensures that there
will be at least three consecutive 0s in a normal blink se-
quence. Since there could be false detection on the eye sta-
tus, we introduce a polling method to correctly identify a
blink action. For each detection we take Np sampling re-
sults in the eye status sequence in a sliding-window manner.
If 0s are the majority in the poll, a blink will be identified.
The polling method makes our system tolerant of detection
exceptions in the eye status. The value of Np is empirically
set to 3 in our system.

The blink detection will be applied to both left and right
eye sequences simultaneously. In most cases, people close
and open their eyes at the same time, while a facial paral-
ysis patient usually cannot close their eye on the ill-side.
Consequently, if the blink detection gives a different result
on two eye status sequences, we define it as an anomaly.
Once an anomaly is detected, iBlink will give the patient an
electrical stimulation through sending out a signal through
GPIO interface of the Raspberry PI Zero.

5. STIMULATION CIRCUITS
The stimulation circuits are consisted of an amplifying cir-

cuit and a level control circuit. The amplifying circuit takes
in pulse width modulation (PWM) waves from the Rasp-
berry Pi Zero and amplifies them to generate the stimula-
tion output on the stimulating electrodes. The level control
circuit implements 16 different output stimulation levels on
the stimulating electrodes by adjusting the power level of
the amplified PWM waves according to the control signals
from the Raspberry Pi Zero and the input from the pain
switch. The working procedure of the stimulation circuits is
shown in Fig. 6.

Figure 6: Workflow of the stimulation module.

The amplifying circuit takes in 3.3V PWM waves from the
Raspberry PI Zero and 7.4V power input from the power
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unit. In the red amplifying loop, the camera monitors the
feedback of the patient after every stimulation. The Rasp-
berry PI Zero sends out the PWM waves according to the
result of blink detection and anomaly detection. And the
amplifying circuit amplifies the PWM waves to output be-
tween 100V to 200V on the stimulating electrodes. The
level control circuit takes in the GPIO signals and the fine-
tuned pain switch input to adjust the level of the stimula-
tion, which is shown in the level control loop.

Amplifying circuit. The amplifying circuit contains
three bipolar junction transistors (BJTs), one transformer
and several resistances to amplify the PWM waves from the
Raspberry PI Zero. The lithium battery pack provides 7.4V
power supply to the circuit, and a pair of finely placed stim-
ulating electrodes are used to stimulate the patient’s facial
nerve branches. The implementation of the amplifying cir-
cuit is shown in the left part of Fig. 7.

Figure 7: Circuit implementation.

We use 9013 NPN BJT triode [32] in the circuit, which
is a kind of NPN low power triode mainly used for audio
amplification and radio 1W push-pull output. The type of
the PNP BJT is 8550 [33], which is characterized by small
signal, low voltage and high current and is mainly used in
switches and RF amplification. The transformer amplifies
the 3.3V PWM waves to about 200V output. Altough the
instantaneous voltage is very high, the stimulation is safe
since the high voltage lasts only in about 3 ms. For stimu-
lating electrodes, we use electrodes made of conductive oint-
ment, which can be finely attached to human skin and have
good electrical conductivity. The distance between the two
stimulating electrodes is set to be 3.3 cm, which is chosen
empirically from our experiments and clinical trials to invoke
the best stimulation reactions. Those conductive ointment
electrodes can be easily changed for maintenance purpose
on a regular basis.

Level control circuit. The level control circuit is shown
in the right part of Fig. 7. It consists of a bilateral switch
chip CD4066BE [34] and a potentiometer. The bilateral
switch chip takes in GPIO control signals from Raspberry
PI Zero and changes the output voltage level of the stimu-
lating electrodes by switching resistances to different values.
In our circuit, we implement 16 stimulation levels for the
output. We also use a potentiometer as a pain switch to
allow patients to adjust the output voltage manually. The
potentiometer is designed to adjust the voltage only within
one stimulation level in case of misoperation.

Due to unpredictable factors such as temperature, humid-
ity and shape of human skin, conductivity of the skin varies
not only among different people but also in different time

and places. It is impossible to accurately set the stimula-
tion intensity to a fixed value; our level control circuit pro-
vides both automatic stimulation level selection and manual
fine-tuning capabilities.

6. AUTOMATIC CONTROL MECHANISM

6.1 Stimulation Control
Requirements analysis. First, the conductivity of hu-

man skin varies in different situations as mentioned in the
previous section, so people can have different thresholds for
stimulation. We conduct clinical experiments on 5 volun-
teers in a hospital with the EMG workstation. The equip-
ment we use in the hospital measures the stimulation inten-
sity by electric current. Table. 1 shows the critical points for
stimulation reactions of different patients. The values of the
electric current thresholds are found by manually increas-
ing the value by a stride of 0.1 mA, which is inconvenient
and inefficient. There is a need of a mechanism that can
automatically and efficiently find patients’ critical points of
stimulation.

Table 1: Measurement of critical points on different
people

Label Gender Age Critical Point (mA)
1 Female 42 5.7
2 Male 19 10.6
3 Male 35 7.0
4 Male 28 6.4
5 Female 22 4.5

Second, patients wear the iBlink on a daily basis, where
the electric stimulations are applied to the patients accord-
ing to the result of real-time image processing. Since the
status of a human body and the surrounding environment
can be changing in different times of a day, dynamically ad-
justing the stimulation parameters is a practical need.

Third, since human facial skin is very sensitive, in case of
discomfort or pain, the iBlink needs to adjust the stimulation
parameters in time according to the real-time feedback from
the patients. Thus, automatic stimulation control is a must
for our medical device.

Mechanism design and implementation. We define
four working modes for the iBlink system:

• Startup Mode: When the patient wears the device
for the first time and turns on the system, the iBlink
automatically searches for a lowest stimulation level
that can invoke an eye-closing reaction. The corre-
sponding stimulation voltage is recorded for future use.

• Daytime Mode: The iBlink works in this mode when
the illumination condition is good. This is the basic
mode that runs in majority time of a day.

• Nighttime Mode: When the illumination intensity
is low, iBlink starts the infrared lights and use the
nighttime CNN for image processing.

• Pain Control Mode: This mode runs concurrently
with the other four modes. Once receives the patient’s
signal, the iBlink automatically decreases the stimula-
tion level to avoid pain by over stimulating.
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Figure 8: Working flow of automatic control mech-
anism.

Figure. 8 shows the workflow of the automatic stimulation
control, where ALI means ambient light intensity, Tp is the
pain threshold. The automatic stimulation control mech-
anism relies mainly on the input of illumination data and
blink detection results. In the startup mode, the stimula-
tion level starts from 0 and increases incrementally. The eye
camera monitors the feedback of the patient’s eyes. If there
is no blink resulting from the stimulation, the stimulation
level continues to rise, until it reaches the level that causes
an eye-closing reaction. The eye camera also monitors the il-
lumination data, with which a model selector can switch be-
tween daytime mode and nighttime mode. In the nighttime
mode, the infrared lights are turned on automatically. The
infrared component emits the invisible light, which however
reports no sense of uncomfort either in the test on our own
or in the experiments on volunteers. In case of discomfort or
pain, which means there exists an over stimulating situation,
the patient can give a signal by closing the healthy-side eye
for a certain length of time. This triggers the pain control
mode and the stimulation level starts dropping, until a new
critical level is found. The pain control algorithm is shown
in Algorithm 1.

Algorithm 1 Pain Control Algorithm

Require: Control Threshold CT;Test times k;
Minimum Level Levelmin;
Initial Level Levelinit;

Ensure: Level series changing with time Level[]
1: k← 1, Level[k]← Levelinit

2: t1 ← getSystemTime(), s1 ← getEyeStatus()
3: while True do
4: k← k + 1
5: t2 ← getSystemTime(), s2 ← getEyeStatus()
6: if s2=Open then
7: s1 ← s2
8: Level[k]← Level[k− 1]
9: else

10: if s1=Open then
11: t1 ← t2
12: s1 ← Closed
13: Level[k]← Level[k− 1]
14: else
15: if t2 − t1 > CT then
16: t1 ← t2
17: Level[k]← Level[k− 1]− 1
18: if Level[k] < Levelmin then
19: Level[k]← Levelmin

20: end if
21: end if
22: end if
23: end if
24: end while

6.2 Sampling Control
Normally, people can keep their eyes open for about 2

seconds to 8 seconds and then close their eyes for about
0.2 seconds to 0.4 seconds. To capture the exact movement
of patients’ eyes, the camera sampling frequency should be
neither over low to lose useful information nor over high to
consume much power. In this section, we describe our adap-
tive sampling algorithm which automatically adjusts the sys-
tem’s sampling frequency.

Upper and lower bounds of sampling interval. We
set the upper bound of sampling interval BU to be 0.05
seconds, which ensures there will be at least 3 eye-closing
images captured by the camera. Since the fastest sampling
frequency of our camera is 30Hz, the lower bound of the
sampling interval BL is 0.033 seconds.

Adaptive sampling algorithm. Suppose the sampling
interval is τs, it can be expressed as

τs = BL + (BU −BL)r, (2)

where r is a factor with 0 < r < 1. We calculate the blink
interval τb by averaging the time of all neighboring points
of the same status in the blink graph and aggregate them
into one point. The blink graph is derived by applying the
polling method to the eye status sequences during blink de-
tection. In this way, all neighboring points on blink graph
are of different status. The blink interval is the time interval
between two neighboring points when the eye is open. The
definition of the blink interval is defined in Fig. 9.

Figure 9: Definition of the blink interval

Note that there are two parameters M and α in the adap-
tive sampling algorithm to automatically adjust the cam-
era sampling frequency. M is used to calculate the average
period of single blink and α determines how to adjust the
sampling frequency. When we are calculating the current
time-interval, we look back to the past M ·2 sampling inter-
vals, where M is a predefined positive integer. We calculate
the average of the early M blink intervals as τ̄1b and the av-

erage of the other M intervals as τ̄2b . We set a empirical

threshold τT and compare τ̄1b with τ̄2b . Different events can
be defined according to the comparison result:

• Advance Event: τ̄2b − τ̄1b > τT , i.e., the increment of
blink interval is larger than the threshold.

• Back-off Event: τ̄1b − τ̄2b > τT , i.e., the decrement of
blink interval is larger than the threshold.

• Stable Event: |τ̄1b − τ̄2b | < τT , i.e., the change of blink
interval is within the threshold.
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If the Advance Event is detected, the iBlink increases the
sampling frequency as the patient has the tendency to in-
crease their blink frequency. If the Back-off Event is de-
tected, the iBlink decreases the sampling frequency.

The new r under Advance Event can be calculated as

r = r̂ − αD r̂, (3)

where 0 < αD < 1, r̂ is the previous r and αD is a constant
factor controlling the rate at which r decreases.

The new r under Back-off Event can be calculated as

r = r̂ + αI(1− r̂), (4)

where 0 < αI < 1 and αI is a constant factor controlling the
rate at which r decreases.

The design of the formula makes r decrease slower and
increase faster when it is small and increase slower and de-
crease faster when it is big. The parameter r will change the
sampling interval accordingly. We set the initial value of r
to be 0.5, which is empirically suitable for most of patients.
The adaptive sampling algorithm is shown in Algorithm 2.

Algorithm 2 Adaptive Sampling Algorithm

Require: Lower bound of sampling interval BL ;
Upper bound of sampling interval BU ;
Parameter of sampling interval r;
Increasing factor αI; Decreasing factor αD;
Turn count t; Average window M.

Ensure: All sample time S[];
1: t← 1, r← 0.5
2: τs ← BL + (BU −BL)r
3: S[0]← 0, S[t]← S[t− 1] + τs
4: while True do
5: if t geq2 ·M then
6: τ1s ← 0, τ2s ← 0
7: for i = 0→M do
8: τ1s ← τ1s + S[t− 2M + i]− S[t− 2M + i− 1]
9: τ2s ← τ2s + S[t−M + i]− S[t−M + i− 1]

10: end for
11: τ̄1s ← τ1s /M , τ̄2s ← τ2s /M

12: if τ̄2s − τ̄1s > τT then
13: r← r− αDr
14: else if τ̄1s − τ̄2s > τT then
15: r← r + αI(1− r)
16: end if
17: end if
18: τs ← BL + (BU −BL)r
19: t← t + 1
20: S[t]← S[t− 1] + τs
21: end while

7. COMMUNICATION BETWEEN THE PA-
TIENT AND THE DOCTOR

We develop an APP to enable the iBlink system to be
linked to the smart phone. The APP could collect and an-
alyze data of the patients and send the derived information
to the doctor. The doctor can request different analyzed
data from the patients’ devices. The communication mod-
ule leverages the Wi-Fi interface of Raspberry PI Zero. The
screenshots of the APP is shown in Fig. 10, from left to right
is the data request page, data analysis page and its zoomed
in view.

The three buttons on the data request page stand for three
ways to transmit data. The “Hour” button starts a thread
to request all the current day’s saved data from the patient,
stores them in a file and append newly collected data to the
file every hour. The “Day” button will request the previous
day’s data and save them in a file. The “All” button will
request all the data on the server and save them in files
identified by date.

The data analysis page shows the blink data in a blink
graph and gives data analysis result, e.g. blink times per
day, minimum blink interval and maximum blink interval.
The data are recorded to help doctors to better study the
patients’ pathology features.

(a) (b) (c)

Figure 10: (a) Data request page. (b) Data analysis
page. (c) Data analysis page (Zoomed in).

Since sometimes intervals of blinks can be useless, like
when the eye is closed due to sleep or rest for a long time,
we devise a way to detect effective time interval during a
day. If any time interval between two blinks is longer than a
predefined value, that interval will be discarded and not be
stored in the record. The process is illustrated in Fig. 11.
The predefined value is empirically chosen to be 10 seconds.

Figure 11: Effective time selection.

8. SYSTEM IMPLEMENTATION
The components of the system are tabulated in Table 2.

Figure. 12(a) shows the main components of the iBlink smart
glasses. The iBlink prototype is consisted of Raspberry
PI Zero, stimulation circuits, stimulating electrodes, an eye
camera with infrared light unit and a power unit. We use
Raspberry PI Zero as the main processor. The infrared light
unit is installed on the USB eye camera and powered by the
GPIO output from Raspberry PI Zero. We design our own
stimulation circuits with amplifying and level control circuit
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embedded. The pain switch is implemented by a poten-
tiometer to fine-tune the voltage output on the stimulating
electrodes. The power unit is a 7.4V lithium battery pack
and the adjustable regulator converts 7.4V to 5V to supply
the Raspberry PI Zero. For wearing comfort and conve-
nience, we design our own spectacles frame using the state-
of-art 3D print machine to eliminate the complex structure
of traditional frame. The components can easily be attached
to the designed spectacles frame. Figure. 12(b) shows our
wearable prototype.

Table 2: Components of the system
Component Properties

Raspberry Pi Zero 2 1GHz CPU, 512MB RAM
Eye Camera 640 ∗ 480, 30fps
CD4066BE −0.5V to 20V , ±10mA
9013 triode NPN, Imax = 0.5A, 625mW
8550 triode PNP, Imax = 0.5A, 625mW

(a)

(b)

Figure 12: (a) The main components of iBlink. (b)
The wearable prototype.

9. PERFORMANCE EVALUATION

9.1 Eye Status Detection
We first visualize the convolved feature maps for eye im-

ages with different status and illumination conditions, and
then evaluate the performance of eye status detection by
measuring the accuracy of the two CNN models.

Figure 13 shows open and closed eye images under differ-
ent illumination conditions and the convolved feature maps

for each image. Row (a) shows the open eye images in dif-
ferent scenarios and row (b) contains the convolved feature
maps after the third convolutional layer in CNN. The closed
eye images and their corresponding feature maps after the
third convolutional layer of CNN are shown in row (c) and
row (d). The six columns demonstrate 6 different scenarios
under different illumination conditions. From left to right
the average illumination intensities are: less than 10lx, 10lx,
20lx, 50lx, 100lx and more than 1500lx. These illumination
intensities corresponds to six major scenarios a patient will
encounter in daily life. Column 1 corresponds to the night-
time scenario and column 6 represents the outdoor scenario.
Column 2-5 represent four different light condition in indoor
scenarios: dark indoor spot, indoor on a cloudy day, room
with dim light and indoor on a sunny day. For those dif-
ferent illumination conditions, we trained two CNN models,
daytime and nighttime. The daytime model is used in out-
door scenario and indoor scenarios with sufficient light. The
nighttime model is used at night and in some dark indoor
scenarios with little illumination. The input images for the
nighttime model are captured with the infrared lights on.

Figure 13: Eye images and convolved feature maps
after the third convolutional layer.

In Fig. 13, the feature maps of open eye images in row
(b) all have a circle-sized hot spot in the middle, which in-
dicates the appearance of an eyeball, while in row (d) the
closed eyes are indicated by a line figure in the feature maps.

Figure 14: Eye status de-
tection.

Figure 15: Voltage -
Stimulation Level.
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Note that in column 2 most values of the closed eye image’s
feature map are high, which can result in lower accuracy in
the classification step. This is caused by low illumination
intensity. To avoid the low accuracy, we set a threshold of
15lx. Scenarios with lower than 15lx illumination intensity
will be processed by the nighttime model.

Illumination is the main environment factor that influ-
ences our system’s performance. We conduct experiments
both in the laboratory and in the wild under different illu-
mination conditions. The eye status detection accuracies of
daytime model and nighttime model are shown in Fig. 14.
We collected 500 open eye images and 500 closed eye images
for each illumination condition in both normal and infrared
version from 5 different people as the test data (12000 in to-
tal). With the illumination intensity over 20lx, the daytime
model’s accuracy is very close to 100%. When the illumi-
nation condition reaches more than 1500lx, the accuracy
slightly drops due to the existence of some extreme cases,
i.e., the illumination intensity reaches more than 10000lx.
Since those extreme cases are rare and unlikely, our daytime
model satisfies patients’ needs in daily scenarios. When the
illumination intensity drops to under 20lx, the nighttime
model performs much better than the daytime model. In
scenarios like dark indoor corners or corridors, the night-
time model can achieve an accuracy higher than 98%, which
is 10% more than the daytime model. Due to the accuracy
drop, we set a 15lx threshold for the model selector to ensure
a high accuracy in different scenarios.

9.2 Automatic Stimulation Control
According to the clinical trial, a voltage between 100V to

200V can induce an eye-closing reaction. We divide the out-
put voltage into 16 levels in our circuits, ranging from 0 to
184V. Figure 15 shows the output voltage for each stimula-
tion level and the trend curve of the levels. In our circuit the
stimulation levels do not divide the voltage range equally.
The trend curve’s slope tend to decrease when the stimu-
lating level rises. We choose this level distribution since we
need those levels with high voltages to increase slowly in
case of discomfort or pain, while those with low voltages to
increase fast to reach the critical point.

To test our stimulation control method in practice, we
record the change of stimulation level by measuring the out-
put voltage of the stimulating electrodes. Figure 16 shows
the output stimulation level change we recorded. Our test
covers all the scenarios we considered in the stimulation con-
trol. From time unit 0 to 12 is the startup phase. The stim-
ulation level continues to rise according to the feedback from
the eye camera. When it reaches the lowest level that can
cause an eye-closing reaction, i.e., a critical point, the rising
procedure stops and the voltage stabilizes on that stimula-
tion level. Starting from time unit 13 to 18 is the first pain
control phase. It is when the patient feels a mild pain and
needs to fine-tune the voltage output. Note that the fine-
tuning can increase or decrease the voltage in at most half
range of the current stimulation level. The stimulation level
eventually stabilizes on a voltage that is slightly smaller than
the voltage of level 12.

At the 50th time unit the second pain control starts. In
this pain control phase the patient feels a relatively strong
pain and triggers the close-eye method. When iBlink detects
the patient closes his eye for more than 3 seconds, the stim-
ulation level starts dropping and stops at the first level that

cannot invoke the eye-closing reaction. Then the level rises
back by one to the new critical level that can cause the close
eye reaction. The patient then fine-tunes the voltage by
the pain switch. After time unit 100, the patient simulates
falling asleep. The close-eye method is again triggered. The
stimulation control attempts to drop the stimulation level
every several time units. When the attempted stimulation
level causes an eye-closing reaction, the voltage stabilizes
at the lower level. By this method, the stimulation level is
always kept on the lowest level that can cause a close-eye
action.

Figure 16: The change of stimulation level

9.3 Power Consumption
Power consumption is the crux of wearable devices and

this also applies to iBlink. Our system uses a 7.4V lithium
battery pack as the power unit, which provides power sup-
ply for both blink detection and stimulation subsystems. A
natural question to ask is: how long the battery pack could
support operations of the entire system. To answer this
question, we conduct power consumption experiments and
measure the voltage of the battery pack during the device’s
usage. In the experiment process, we activate the CNN
based blink detection mechanisms all the time and set the
highest stimulation level for the stimulation circuits. The
voltage of the battery pack is measured every 10 minutes.
The purpose of such a setup is to make the system operate
in the highest power consumption level so that the worst
case scenario can be examined. The experimental results
are shown in Fig. 17, which presents how the voltage of the
battery pack changes as the time goes on. It indicates that
the 7.4 V lithium battery pack can support the system’s op-
eration in the worst power consumption scenario for at least
10 hours, which is sufficient for a patient’s daytime use.

Figure 17: Power consumption.
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(a)

(b)

Figure 18: (a) Before stimulation. (b) After stimu-
lation.

9.4 Experiments on Volunteers
We conduct experiments on volunteers in a hospital to ver-

ify the function of our system under the doctor’s supervision.
There are six volunteers testing the stimulation circuits. We
illustrate the testing snapshots of some of the patients with
their permission in Fig. 18 and Fig. 19. In the process as
shown in Fig. 18, the donator sticks the brown ointment elec-
trodes to the facial nerve branches near the abnormal eye as
shown in Fig. 18(a). We increase the stimulation level grad-
ually to manually simulate the Startup Mode until the eye
is stimulated to close as shown in Fig. 18(b). Table. 3 shows
the critical level for stimulation of corresponding patients.
All of the six patients report no feeling of pain during the
whole test and only the 43-aged female volunteer mentions
a slight sense of tingling. All volunteer patients appreciate
our work and believe the product is useful for facial paralysis
patients.

Table 3: Critical stimulation levels of different pa-
tients

Label Gender Age Critical stimulation level
1 Male 21 12
2 Male 22 13
3 Female 30 7
4 Male 35 7
5 Female 43 9
6 Female 59 11

Another middle-aged female patient volunteers to try our
prototype as shown in Fig. 19. The left image in Fig. 19
is the patient’s normal eye status. The camera is installed
on the health left side of face and the electrodes are on the
right side of her face, which is the paralyzed side. We can see
that her right eye opens a little wider than the healthy side
eye. The middle image is when the patient is closing her left
eye while her right eye cannot be closed. This is when the
iBlink sends out the stimulation signals. The right image in
Fig. 19 is when the electric stimulation invokes an eye-closing
reaction and the patient is able to close both of her eyes.
The result of this trial proves that our device can satisfy the
patient’s requirement. Note that our iBlink prototype has
updated after the clinical trials in the hospital. In Fig. 19 is
the previous version of the iBlink and it is used for testing

Figure 19: Experiment on Volunteers

and data collection purpose. We upgraded the iBlink to the
one as shown in Fig. 12.

10. RELATED WORK
Kim et al. propose to use smart phones to diagnose fa-

cial paralysis [26], where the ‘asymmetric index’ is proposed
to evaluate the degree of asymmetry of both sides of the
face. Through measuring the asymmetric index during dif-
ferent expressions like resting, eye-brow raising and smiling,
the smartphone could help determine if the facial paraly-
sis happens to the person. However, the diagnosis accuracy
reaches only 89%, which still needs significant improvement.
In contrast to the work just propose an approach to facili-
tate diagnosis of facial paralysis, we implement a wearable
device to provide eye protection for paralysis patients.

Wearable computing devices such as Google glasses have
been attracting much attention in recent years. Efforts have
been dedicated to not only design and implement new types
of glasses with interesting functions, but also utilize exist-
ing equipment to carry out jobs like data collection and
analysis. iGaze[19] and iShadow [18] are representatives of
smart glasses proposed recently. iGaze establishes person-
to-person as well as person-objects communication by rec-
ognizing eye gaze action. Mayberry et al. propose iShadow,
where the power consumption of real-time sensing is dra-
matically reduced. Rallapalli et al. realize physical analysis
in retail stores based on customer behaviors collected from
smart glasses. Although smart glasses are prevailing nowa-
days, most existing devices just focus on entertainment. Our
work in this paper focuses on eye protection for facial paral-
ysis patients, which is an urgent requirements for a consid-
erable group of people.

11. LIMITATIONS AND FUTURE WORK
Although the current iBlink system can realize the basic

blink triggering function, considerable efforts are still needed
before it can be practically deployed. The major issue of
the current version of iBlink system is that the weight of
the device is higher than the ordinary glasses, which makes
it uncomfortable for long-time wearing. There is a need
to remove some unnecessary components from the frame.
Our tentative plan for the next version is to remove the
Raspberry PI Zero and the eye camera from the frame and
just keep the stimulation circuits and stimulating electrodes.
The motivation of this revision is the observation that nowa-
days people spend much time watching the smartphone. We
could develop a smartphone APP to learn the pattern of
the user’s blink actions in the background, and the APP
can send the stimulation commands to the stimulation cir-

368



cuits. The circuits will be enhanced with a bluetooth low
energy (BLE) module to receive commands from the smart-
phone and generate stimulating impulses. In this manner,
the Raspberry platform and the eye camera could be re-
moved, and it is easier to develop a graceful appearance
design for the frame with remained components. In partic-
ular, the wiring overhead, and the power supply need could
also be reduced, which will lay the foundation to improve
the current clunky design.

12. CONCLUSION
We have designed and implemented iBlink, a pair of smart

glasses to provide eye protection for facial paralysis patients.
We have proposed an eye-movements detection mechanism
based on deep convolutional neural network (CNN), which
can detect asymmetric eye-movements of patients under var-
ious illumination conditions with an accuracy above 99%.
Our library for training CNN models has been published
online for further related studies, which contains more than
30, 000 eye images. Moreover, we have designed and imple-
mented an automatic stimulation circuits to generate elec-
trical impulse for the patient’s facial nerve branches stimu-
lation, which can configure operational parameters in a self-
adaptive manner for different patients. Further, we have
implemented the entire iBlink system, which integrates the
two functions above and a communication function module
for tele-medicine applications. We have conducted compre-
hensive clinical trials in a hospital, in order to obtain the
design basis and verify effectiveness of our device.
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