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Abstract—Self-calibrating wireless indoor localization systems construct the radio map even the indoor floor plan automatically, which
avoids the labor-intensive site survey process; however, existing systems utilizing the feature of Wi-Fi signals can only provide coarse-
grained indoor maps, which hinders improvement of localization accuracy. In this paper, we present FineLoc, a fine-grained self-
calibrating localization system based on the freely-deployed Bluetooth low energy (BLE) nodes and crowdsourced data, which can
profile more detailed layout information of the indoor space. We first reveal that existing systems can only generate inaccurate floor
plans owning to the coarse-grained Wi-Fi reference information. Then we utilize the increasingly popular BLE beacon nodes as the
source of reference information, with which a series of dead-reckoning optimization and new schemes particularly for finer-grained
indoor map construction are presented. We implement a prototype FineLoc system, which is deployed in around 11, 000m2 areas. Our
experimental results with the prototype show that FineLoc can achieve 80% localization errors within 1.6m, 1.4m and 1.1m in the library,
classroom building and office building respectively, with an average density of deployed BLE nodes less than 2.6/100m2.

Index Terms—Simultaneous localization and mapping (SLAM), localization, bluetooth low energy (BLE)
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1 INTRODUCTION

THE past decades have witnessed extensive research
work on wireless indoor localization [1]–[6]. Although

the recently proposed techniques leveraging the wireless
channel state information (CSI), Radio Frequency Identifi-
cation (RFID) and the acoustic signal can achieve amazing
accuracy, the received signal strength indicator (RSSI) based
indoor localization is a more practical solution for large-
scale deployment. This is because the special hardware
enabling those high-accuracy localization techniques, such
as special APs that can retrieve CSI [7]–[9], the expensive
RFID readers [10] and acoustic anchors [11] are not widely
deployed. By contrast, the RSSI is handily available from
commodity mobile devices, and the RSSI based localization
approach just utilizes pervasive wireless infrastructure such
as Wi-Fi and iBeacon [1], [6], [12].

The major obstacle hindering large-scale deployment of
the RSSI based indoor localization system is the tedious
and costly offline training process, which requires manual
efforts for radio map construction and periodical calibration
[1], [6], [13]. To address the issue, mechanisms are proposed
to construct and update the radio map in a crowdsourcing
manner [4], [14], [15], where the inertial measurement unit
(IMU) embedded in the users’ mobile devices is exploited.
While such schemes enable radio map construction with
crowd workers’ non-participatory opportunistic sensing,
they require precise information of the floor plan to derive
landmarks [14], [16], [17]; however, both the floor plan and
the landmarks are not always easily available in practice.
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Self-calibrating indoor localization systems are capable
of constructing the radio map and even the floor plan
automatically [18]–[20], where the opportunistically sensed
data from users are smartly combined. The core idea of
such systems is to exploit the notable feature of ambient
Wi-Fi signals serving either as landmarks in the pathway
environment [18] or as labels of users’ trajectories [19], [20].
However, such systems can only construct particular floor
plan in a coarse granularity, where pathways are aggregated
into line segments, thus resulting in 1 ∼ 3m average
localization error in favored environments. We note that the
recently proposed BatMapper system can construct the floor
plan with 80% room geometry error within 0.3m [13]; how-
ever, the acoustic sensing based technique is constrained
by the short transmission range of acoustic signals, and
it still requires the user-participatory measurement, which
obstructs the large-scale deployment.

In this paper, we present FineLoc, a fine-grained self-
calibrating indoor localization system based on the RSSI of
freely-deployed bluetooth low energy (BLE) beacon nodes
and the IMU data, which can derive more detailed layout
information of the indoor space with achieving the 80%
localization error of 1.6m even in unfavored indoor spaces.
Our contributions are as follows.

First, we reveal the fundamental reason why existing
self-calibrating indoor localization systems can only gener-
ate coarse-grained floor plans (§Section 3). The reason is that
the features of the Wi-Fi signal serving as the cornerstone
reference information in those systems function well only in
certain conditions, where the length of the user’s trajectory
must be notably greater than the distance between the trajec-
tory and the Wi-Fi AP. Moreover, due to the comparatively
large coverage of the Wi-Fi AP, it is difficult to distinguish
the relative positions of different trajectories; therefore, Wi-
Fi based systems aggregate multiple trajectories into a single
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line segment, which is unable to derive detailed layout in-
formation such as rooms, walls and obstacles. Wi-Fi signals
are unable to provide fine-grained reference information,
which is determined by the design principles of the Wi-Fi
system. This motivates us to utilize BLE beacons for refer-
ence information, which is also a pervasive infrastructure
gaining increasing popularity [21]–[25].

Second, we present design of FineLoc, where the widely
used dead-reckoning mechanisms are optimized, and new
data fusion schemes particularly for fine-grained map con-
struction are developed (§Section 4). We present a method
to recognize the user’s posture of holding the smartphone
when performing non-participatory sensing, which pro-
vides more precise trace (§Section 5.1). We develop a la-
beling scheme to associate the BLE beacon nodes with
users’ trace, which addresses the issue of unstable BLE
reference information due to random radio propagation and
heterogeneity of both mobile devices and beacon nodes
(§Section 5.2). Then we design an efficient trace merging
mechanism, which integrates trace data under different
coordinate systems into the skeleton of the indoor map
under the unified coordinate system; such mechanism can
also detect displacement of BLE nodes and eliminate the
incurred error with automatic map update (§Section 5.3).
To further eliminate IMU error in direction recognition, we
embed our trace revising algorithm into system to improve
the reliability (§Section 5.4). Moreover, we propose a map
pixel classification scheme, which categorizes areas not cov-
ered by trace data into different classes such as pathway,
obstacle and wall based on nearby trace information, so that
a more detailed indoor map can be derived (§Section 5.5).
Finally, we show how FineLoc works (§Section 5.6).

Third, we implement the FineLoc system in three types
of indoor spaces covering more than 11, 000m2 areas, and
conduct extensive experiments to validate proposed mecha-
nisms. It shows that FineLoc can construct fine-grained floor
plans not only in the environment where small-sized sub-
areas densely distributed such as the office building, but also
in the open wide environment such as the library; FineLoc
can illustrate more detailed information of pathways, rooms
and obstacles in the constructed map. A map can be largely
constructed after 20 ∼ 120mins of free walk; moreover, our
system limits 80% localization errors within 1.6m, 1.4m and
1.1m in the library, classroom building and office building
environment respectively, with the average density of de-
ployed BLE nodes less than 2.6/100m2 (§Section 6).

2 RELATED WORK

Ubiquitous use of mobile devices stimulates the spring-
up of wireless indoor localization techniques [1], [6], where
the RSSI has been utilized since emergence of Wi-Fi based
systems [2], [3]. Those systems first perform offline training
associating the RSSI with the location where the data is sam-
pled, and then estimate the user’s location by comparing
the user’s reported RSSI with the radio map obtained in the
training phase, in order to derive the most matched location.
This is known as the fingerprinting based approach, where
the issue of labor-intensive training phase has been noted;
the corresponding countermeasure is to exploit the radio
propagation model to populate part of the training database
[2]. Such a model based approach is optimized and applied

to later indoor localization systems [4], [26] in special sce-
narios; however, a large body of work has shown that the
radio propagation model is inaccurate for localization [6].

With more IMU sensors embedded in the cell phone,
the IMU data are utilized to save the offline training efforts
under the crowdsourcing paradigm, where the basic idea is
to analyze IMU data and RSSI to construct the radio map.
LiFS [16] uses multi-dimensional scaling to match finger-
prints to locations. Zee [14] exploits war-driving to infer
locations, which is facilitated by the constraints imposed
by the floor plan. WILL [15] leverages the IMU data to
infer the user’s location by comparing the corresponding
RSSI characteristics and the floor plan. KAILOS provides
a crowdsourcing platform and the toolkit for contributors
to upload indoor maps and construct radio maps at target
buildings [27]. Those systems relieve the site survey over-
head, but the ground truth floor plan must be previously
acknowledged.

The floor plan however is not always easily available, for
which efforts have been dedicated to perform localization
without site survey and floor plan. UnLoc [17] leverages
the identifiable characteristics in the building as landmarks,
and estimate the user’s location with the landmark informa-
tion and the mobile device’s IMU data. Walkie-Markie [18]
proposes to use the dynamic feature of the Wi-Fi signal as
the landmark to construct the indoor pathway map. In par-
ticular, the landmark is the pathway location at which the
RSSI from a certain AP changes from increase to decrease.
The changing of the RSSI from Wi-Fi APs also can be used
to determine whether two users’ trajectories are from the
same path segment, which provides the basis of floor plan
derivation in a crowdsourcing manner [19].

Our work in this paper shares the objective of Walkie-
Markie and PiLoc; however, we improve the granularity
of the floor plan to be constructed and thus improve the
localization accuracy. Our system serves general localization
activities in contrast to special leader-and-follower navi-
gation needed as in FOLLOWME [28]. Wireless localiza-
tion techniques based on CSI, RFID, and acoustic signals,
as well as that based on visible light [29] can achieve
amazing accuracy [8]–[11], which, however, still need site
survey and accurate floor plans. We note that the recently
proposed BatMapper scheme can construct the floor plan
with 80% room geometry error within 0.3m [13]; however,
the acoustic sensing based technique is constrained by the
short transmission range of acoustic signals, and it still
needs involving participatory user measurement and thus
is difficult for large-scale deployment. In contrast, we use
the crowdsourcing paradigm to aggregate crowd workers’
traces into a map.

FineLoc is a fine-grained self-calibrating indoor local-
ization system. To understand the concept of finer-grained
and self-calibrating better, we compare the proposed system
with existing ones as shown in Table. 1. We can see that
some systems [18] [19] can only generate pathway floor
plan without any detailed information. Systems with com-
paratively finer granularity [30] [31] can distinguish one
room from another. If the system can recognize obstacles
in the indoor space, then we can say the granularity is
even finer. Non-calibration means the neccesity of prior
knowledge of landmark placement while unique calibration
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TABLE 1: Finer-grained Self-calibrating Indoor Localization System Comparison
System Name FineLoc Walkie-Markie [18] PiLoc [19] Jigsaw [30] BatMapper [13] SenseWit [31]

Technology BLE Wi-Fi Wi-Fi Vision Acoustic only INS
Pathway Floor Plan Yes Yes Yes Yes Yes Yes

Sub-room Classification Yes No No Yes No Yes
Obstacle Recognition Yes No No No No No

Non-Calibration Yes Yes Yes Yes Yes Yes
Unique Calibration Yes Yes Yes Yes No No

means that the uniqueness of the landmark can be provided
by the system. Among the schemes in Table. 1, Walkie-
Markie [18] and PiLoc [19] are based on Wi-Fi and provide
both mapping and localization schemes while BatMapper
[13] , Jigsaw [30] and SenseWit [31] can only sketch floor
plan. FineLoc is the only fine-grained self-calibrating indoor
localization system.

3 MOTIVATION

Constructing indoor maps requires reference informa-
tion that can reflect the physical layout of buildings; more-
over, the reference information must be uniquely identifi-
able, and functioning with no need to deploy special infras-
tructures, considering the scalability and cost. The natural
signatures such as the fluctuation of magnetic fluctuation
in certain part of the building as in UnLoc [17] need no
dedicated infrastructure but can not be uniquely identified
in multiple buildings. The spatial or timing feature of Wi-
Fi signals can be uniquely identified with the help of the
Wi-Fi AP’s MAC address [18], [19]; however, such reference
information has limited capability to reflect the building’s
physical layout. This is why the floor plan constructed with
Wi-Fi based reference information is with coarse granularity.
This section first reveals the fundamental reason why the
Wi-Fi based reference information leads to coarse-grained
indoor map, and then presents our choice of reference
information source for finer-grained indoor map.

3.1 Analysis of Wi-Fi Landmarking
Wi-Fi signals can reflect the building’s physical layout to

some extent. When a user passes through the covered area
of a Wi-Fi AP, the user’s mobile device can observe that the
RSSI of the AP increase as the user moves closer towards
the AP, and decrease as the user moves past the AP. Fig. 1(a)
shows the scenario, where it shows that the RSSI increases to
a peak point and then decreases as the user moves fromA to
B. The RSSI tread tipping point (RTTP) corresponds to a fixed
position on the way that is closest to the AP, which can serve
as a landmark to provide location reference information in
map construction [18]. In reality, the RTTP can be obviously
identified only if the length of trace AB (30 steps) is notably
greater than the distance between the AP and the trace (9
steps). In contrast, once the length of trace EF (10 steps) is
comparable to the distance between the AP and the trace (7
steps) in Fig. 1(b), we can see from Fig. 1(d) that the RTTP
is difficult to identify. The hidden reason is that Wi-Fi RSSI
changes slightly when the distance between the user and
the AP varies a little. The observation indicates that the Wi-
Fi landmarks only appear when the user is walking along
a long path, which explains why Walkie-Markie can only
construct maps for pathways; because the size of room is
usually limited, where the users cannot walk along a long
straight path for RTTP identification.
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Fig. 1: Wi-Fi RTTP shows less scalability.
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Fig. 2: Existing schemes cannot recognize obstacles due to
coarse-grained merging.

In PiLoc [19], the user’s mobile device records the ob-
served Wi-Fi RSSI while walking; the recorded time series
of the RSSI from different users are compared for corre-
lation, which is a critical reference information to deter-
mine whether the RSSI series are observed from the same
location in the building. Although claiming independent
of landmarks, PiLoc factually leverages the RTTP feature
to determine the correlation of two traces in an implicit
manner. The similar RTTP observed in two traces is the most
prominent feature of the two traces, which only appears
when the length of the trace is notably larger than the
distance between the AP and the trace. Without the RTTP
feature, the correlation between the two traces is dominated
by the environment noise, which is unable to determine the
trace similarity. Fig. 1(d) shows the scenario, in which the
correlation of the two traces is 0.143 .

The experimental results presented in Walkie-Markie
and PiLoc factually corroborate our analysis. In particular,
Figure 4 in [18] and Fig. 7-9 in [19] show that the RTTP
appears when the length of the trace is at least 30 steps.
This is far beyond the dimension of regular rooms in the
building; therefore, both Walkie-Markie and PiLoc focus on
constructing pathway maps.

If the RTTP only appears in the long trace, will the refer-
ence information based on Wi-Fi signals be suitable for wide
open areas such as libraries or museums? Unfortunately, the
answer is negative. If the two paths are labeled with the
RTTP from the same AP, it will be difficult to determine dis-
tances between the paths and the AP respectively. As shown
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in Fig.1(c), paralleled trace AB and CD can obtain almost the
same RTTP. Thus it’s impossible to recognize the relative
distance between AB and CD (3 steps). Fig.2(a) illustrates
the two traces T1 and T2 in real situation, where the space
between the two traces can be observed. Due to coarse-
grained RTTP recognition, the current solutions in [18], [19]
just merge the two traces to form a combined trace as shown
in S1, which makes the space between T1 and T2 unable to
be reflected in the resulted floor plan. Regular pathways
may be modeled with line segments; however, the trace
merging schemes can prevent the constructed floor plan
from reflecting the obstacles such as the bookshelf, showcase
and booth between two traces, as shown in Fig.2(b), which
results in coarse-grained map with little usefulness.

The trace merging method is adopted in both Walkie-
Markie and PiLoc, because the nature of the Wi-Fi signal
can provide only coarse-grained reference information. The
infrastructure Wi-Fi AP is designed to cover a hundred-
meter-radius area; APs are normally sparsely deployed to
save the cost and avoid MAC layer collisions. Even if some
traces can observe strong RSSI with respect to an AP, it is
still hard to determine the distance between the trace and
the reference point such as RTTP generated by the Wi-Fi AP.
Consequently, it is reluctant for the coarse-grained relative
location information of the user’s trace with respect to
instable reference information to provide basis to construct a
fine-grained indoor map. It is necessary to find finer-grained
reference information.

3.2 BLE Landmarking

We find that BLE nodes such as iBeacons can be a
promising source of reference information for indoor map
construction, which can be uniquely identified and have
been deployed in many public places. For example, major
league baseball (MLB) has been using iBeacons since the
start of the 2014 baseball season to track MLB app users
and send relevant messages to enhance the ballpark expe-
rience [21]; airline companies and retailers have been using
iBeacons to send flight information and coupons [22], [23];
the mobile social app WeChat owning hundreds of millions
of active users has been providing users with the mini
program interface to discover iBeacons [24]; there have been
iBeacon based localization systems deployed leveraging the
proximity approach [23], [24]. Research efforts also have
been dedicated to building BLE based localization systems
[12], [32], [33], where it has been verified that BLE has some
favored characteristics in localization compared with Wi-
Fi; however, how to leverage BLE nodes for indoor map
construction is still an open issue.

The fundamental reason that BLE nodes can provide
finer-grained reference information is that the nodes can be
close to the user’s mobile device, which is rooted in the BLE
design principles to provide smaller coverage for power
saving. Such a favored feature leads to that the relative
location of the user’s trace with respect to the BLE node can
be more accurate and reliable. This provides opportunities
to identify spaces between traces and thus can reflect more
detailed information of the building’s physical layout.

However, to enable the fine-grained self-calibrating lo-
calization system, we are confronted with the following new
challenges:

Trace Labeling

Label Trace with BLE Beacons

Map Construction Phase

Trace Merging

Label Trace Segments in Rooms

Map Pixel 

Classification
Localization Server

Localization Phase

Data Collection

Posture Recognition

Trace Revising

Fig. 3: System Architecture

Challenge 1: Fine-grained map construction. As shown
in Table. 1, FineLoc is the only fine-grained self-calibrating
indoor localization system. In contrast to previous floor plan
construction methods, integrating users’ traces with more
detailed information instead of just illustrating the skeleton
increases the difficulty to realize map construction. Since
there are many factors such as coarse-grained RTTP recogni-
tion and IMU error affecting the construction performance,
it is challenging to construct fine-grained floor plan.

Challenge 2: Dynamic landmarks environment. Since
BLE nodes can be in reach of people, it may happen that
the BLE nodes are moved accidentally, which results in
an environment with dynamic landmarks. As the most
important information to label different traces, dynamic
landmarks might lead to false floor plan construction. There-
fore, it is necessary to design a new trace merging method
to recognize landmarks movement and update the map
dynamically.

4 SYSTEM OVERVIEW

FineLoc constructs indoor maps in a crowdsourcing
manner, where the BLE reference information associated
with the crowd worker’s traces are used to integrate dif-
ferent traces into a map. There is no need to have prior
knowledge of the BLE nodes’ locations, and FineLoc toler-
ates that BLE nodes can be moved or running out of power.
We develop mechanisms to categorize traces submitted by
different users, from which we derive detailed information
reflecting the building’s physical layout. FineLoc supports
map construction in wide open areas such as the library,
where we can recognize the position of obstacles.

FineLoc is shown in Fig. 3, which shows that the system
consists of two phases. FineLoc first collects trace data from
mobile users and processes the data with several sequential
mechanisms to construct the indoor map, which is termed
as the map construction phase; the constructed map is then
used for positioning in the localization phase. According to
our experiments to be presented in §Section 6, we can
construct finer-grained floor plan in contrast to previous
works [18]–[20]. Our work in this paper uses BLE beacon
based approach in the localization phase, which presents
80% localization errors of 1.6m, 1.4m and 1.1m in the
library, classroom and office building respectively. The aver-
age density of the BLE nodes is less than 2.6/100m2.
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(a) Acceleration periods (b) Gravity distribution (c) Gyroscope readings (d) Periodicity

Fig. 4: Posture recognition.

5 SYSTEM DESIGN

5.1 Data Collection

5.1.1 Trace Data Format
FineLoc supports crowdsourcing in a non-participatory

manner, where crowd workers can collect data when walk-
ing around within the indoor space in daily life. The trace
data set is denoted by T = {τi, i = 1, 2, ...,m}, where
τi =< id, p, f > is a specific trace. The element id is
factually a tuple< userid, traceid >meaning the trace data
is collected by which user. Note that a user can submit mul-
tiple traces labeled by different traceids, where each labels
the segment of the user’s trace when the user is in a specific
posture, and the traceid will change if the user switches the
posture during walking. This is because the same IMU trace
data indicate different walking distances when the user is
in different postures. The element p = {pt, t = 1, 2, ..., l}
records the user’s position in each user’s relative coordinate
system in each sampling time slot with pt =< x, y >. We set
the initial position and the direction of a newly generated
trace as (0, 0) and along x-axis in the relative coordinate
system, respectively. In contrast to the previous work [17],
[19], [35] assuming the availability of heading direction and
stride length of each trace, which is not always true in
practice, our trace data are in different relative coordinate
systems and will be merged into the same coordinate system
in the trace merging process to be presented in §Section 5.3.
The element f =< mac, rssi > records detected BLE MAC
address and RSSI series during the trace, which is to be
utilized for clustering and merging traces later.

5.1.2 Posture Recognition in Dead Reckoning
Posture Recognition: The trace information is derived

from the IMU data, where the orientation and step count
are fundamental for determining the direction and length
of the trace. How to recognize change of the walking di-
rection has been well studied in [17], which is also adopted
in our work. For the step count determination, detecting
acceleration period is a widely adopted approach [14], [17],
[19], [28], the basis of which is the observation that the
acceleration readings in the three axes of the accelerator
present periodicity.

However, such an approach pays limited attention to
the practical scenario that users may switch their postures
of holding the mobile device during walking. Fig. 4(a)
illustrates periods of accelerator readings when the user
is using different postures, where the acceleration period

Un-steady State

Swinging

Pocketing

Horizontal hand-holding

Calling

Unknown State

Var.
Gravity
High?

Main Gra 
Component?

Var. Gyr 
Value?

No

Y and Z

Otherwise

Yes

X and Y Low

Medium

High  

Fig. 5: Posture recognition classifier.

can be identified by observing the accelerator’s peak value.
However, when the user holds the smartphone horizontally,
one period of the accelerator’s readings indicates that the
user moves one step, but when swinging the smartphone,
one period means two steps.

This is because the readings in X , Y and Z axes of
the accelerator are dependent on the orientation of the
accelerator’s coordinate system with respect to the direc-
tion of gravity. When holding the smartphone horizontally,
each step can result in a slight vibration in the gravity
direction, which indicates a period of walking. The gravity
direction happens to be in accordance with the direction of
Z axis in this case, thus each period of the Z-axis readings
represents one step. However, when the user is swinging
the smartphone during walking, the gravity direction is in
accordance with the direction that is perpendicular to the
gravity direction. It can be found that the readings in Z axis
in this case show the following pattern: peak (right foot) ∼
zero (one step)∼ valley (left foot)∼ zero (two steps)∼ peak
(the next period). This period takes twice time compared
with the period in the horizontal hand-holding case, so a
period represents two steps.

We propose to improve the accuracy of the step-counter
by recognizing the user’s posture of holding the mobile
device. Normally, the user’s postures can be categorized into
the following classes: horizontal hand-holding, swinging,
pocketing and calling, among which the horizontal hand-
holding posture is usually used when the user is performing
localization. Since the user may have unpredictable postures
other than the 4 classes, we categorize the rest of possible
postures into the unknown state. Our posture recognition
scheme is based on the observation that the gravity accel-
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erator readings are different under different postures of the
user’s, as shown in Fig. 4(b). It can be seen that most of
the postures can be well recognized, but some of them have
very similar features. For example, mobile device is usually
placed vertically when calling, swinging and pocketing. To
address this issue, we find that referring to the gyroscope
data can help cross check the user’s posture, as shown in
Fig. 4(c). It is found that the amplitude and pattern of the
gyroscope readings vary under different postures. Based on
this observation, we have designed a classifier to recognize
different postures as shown in Fig. 5. To separate disturbed
states (for example, irregular shaking) from regular states,
we first calculate the variance of gravity to evaluate the sta-
bility of smartphone placement. This is because smartphone
placement is relatively steady under regular states. Then we
obtain smartphone placement relative to absolute gravity
direction of the earth by analysing main gravity component,
where Y denotes the vertical placement and Z denotes the
horizontal one. Finally, with gyroscope readings, we can
further determine smartphone postures.

Step Counter: With the user’s posture determined, we
find that the readings inX , Y and Z axes of both accelerator
and gyroscope may all present periodicity in Fig. 4(d).
Besides, for a certain posture, different readings suffer from
noise pollution in varying degrees. We could choose the
readings with more obvious periodicity to obtain a more
accurate step counts, which is in contrast to existing schemes
considering sum of square of readings in all the 3 axes of the
accelerator [14] [17] [28], which could amplify the noise by
aggregating the noise in each axis.

Heading Angle and Stride Length: Though many re-
searches have been conducted to improve heading angle
recognition and stride length evaluation [18] [19] [34], these
two problems remain serious. For heading angle recogni-
tion, compass readings would be interrupted by magnetic
field and gyroscope can hardly provide absolute direction
under different postures; For stride length evaluation, since
a certain person might cover varied stride length, a fixed or
even trained stride length is still unreliable. In this paper, we
propose an adaptive merging scheme (§Section 5.3), which
can automatically adjust the orientation and stride length
of each trace. Therefore, only relative direction measured
by gyroscope readings [17] and a fixed stride length are
required in this section for trace generation. Then these two
factors would be considered and synchronized.

Remark: In the data collection phase, we want to record
the user’s trace as long as possible, because it is more
likely that a longer trace contains more position information
and landmark information. On the one hand, the distance
between two parallel traces could be identified if they are
long enough to include turns. For example, if the two
traces contain movements of taking turnings, the different
step counts when the two crowd workers take the turning
towards another direction can help determine the distance
between the two traces. Our design philosophy is in contrast
to the previous work [19] preferring the short traces along
one direction, since our work tries to reflect the physical
layout of the indoor space as detailed as possible, but
the previous work is implicitly designed to construct the
pathway layout, where it is convenient for the 1-D short
traces in parallel to be integrated into line segments. On the

other hand, a longer trace may go through more landmarks
while their relative positions could be determined to reflect
the physical layout. Such information could be utilized to
recognize dynamic landmarks in §Section 5.3.
5.2 Trace Labeling
5.2.1 Labeling Traces with BLE Beacons

With the collected trace data, we now need to associate
each trace with BLE beacon nodes using the beacons’ MAC
addresses. We associate the trace with a beacon if a part
of the trace is within 1m of the beacon, where “associate”
means that the beacon is considered in the way of the crowd
worker and can be regarded as a label of the trace. This is
because the BLE node’s coverage is very limited, the mobile
device can observe strong RSSI in the 1m neighborhood of
the beacon. We could leverage the labeled traces to derive
the skeleton of the floor plan. However, the challenge is
that the corresponding RSSI when the mobile device is
in the 1m neighborhood of the beacon varies due to the
random wireless signal propagation and the heterogeneity
of beacons and the mobile devices. It is impractical to set a
fixed threshold of the RSSI to determine if the mobile device
and the beacon are close enough to each other.

To address the issue, we propose a dynamic threshold
updating scheme, where the basic idea is to update the
maximum RSSI observed by crowd workers, and adjust the
information of the traces that are collected before updating
accordingly. In particular, consider a BLE landmark i, for
which the maximum observed RSSI of the landmark is
currently recorded in the server as rimax. If we have a trace
with a series of RSSI f i = {ri1, ri2, ..., rim} observed by a
crowd worker along the trace p = {pi1, pi2, ..., pim} with
respect to the landmark i, we first define w(rik, r

i
max) to

represent the weight rik with respect to rimax:

w(rik, r
i
max) =

(rik − rimax − γ)2I(rik > rimax − γ)
γ2

, (1)

where I is an indicator function, and γ is a protecting thresh-
old to determine the transmission range of the landmark
with an empirical value γ = 15. Then we sum the weight of
each value and assign a weight to the trace defined by

W(li) =
m∑

k=1

w(rik, r
i
max), (2)

where li is the BLE landmark i. The trace has a weight
with respect to li only if it contains a RSSI observation with
respect to li such that rik > rimax − γ. The greater the RSSI
observed in the series, the higher weight the trace is with
li, thus the closer the trace is to li. Note that the square of
both the numerator and denominator is to better distinguish
weights of two traces. Our empirical study shows that if the
weight is greater than 0.8, the trace should be associated
with the landmark.

As more crowd workers pass by the landmark li, the
FineLoc server may get updated by greater rimax, which
means that the weight of the trace with respect to li should
also be updated. A formal description of the update is

W(li|r′max) =W(li|rmax)w(rmax, r
′
max), (3)

where W(li|rmax) can be updated to W(li|r′max) and
w(rmax, r

′
max) could be calculated through Eq. 1.
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After determining weight of the landmark, we could
acquire the landmark’s position in the current coordinate
system. With acquired weights wk and positions p =
{pi1, pi2, ..., pim}, we can obtain the position li = [xi, yi] by

li =

∑m
k=1 pkwk

W(li)
, (4)

5.2.2 Labeling Trace Segments in Rooms

A fine-grained indoor map should be able to reflect room
information, which requires the trace data to be categorized
in terms of sub-areas. The solution in WILL system [15]
calculates Euclidean distance between two fingerprints to
determine whether the fingerprints are observed from the
same room, which is based on the observation that the
RSSI changes due to the wall blockage. In contrast to WILL
utilizing Wi-Fi signals, FineLoc uses BLE signals, which pro-
vide an opportunity to derive more accurate trace segments
classification. However, since RSSIs change rapidly when
the user is near to the node, tradition Euclidean distance
could not be employed directly. Here, we use a discrete
function FV (·) to map the RSSI into corresponding level.
In particular, the RSSI falling into the following ranges
{>-65, -65∼-75, -75, -75∼-85, -85, -85∼-95, otherwise} will
be mapped into the following levels {1, 2, 3, 4, 5, 6, 7}. We
calculate dissimilarities among the RSSI series along the
trace by

Vk,k+1 = (FV (fk)−FV (fk+1))
2, (5)

where fk denotes RSSIs with respect to all observable BLE
nodes in position pk. If Vk,k+1 > 30, then a new cluster will
be generated. In FineLoc, trace segments represent the traces
with respect to different rooms. Since there is usually one
door between adjacent rooms, we can define the position
satisfying Vk,k+1 > 30 as the segmented position for door
recognition. Detail methods to recognize the door would be
presented in §Section 5.5.

In this way, each step in the trace will be categorized
into a cluster, and steps with RSSIs near to each other
are put in the same cluster. All clusters reflect the spatial
characteristics of the RSSI in the building, which lay the
foundation of recognizing rooms. We now could obtain
a set Sl = {l1, l2, ..., ln} , which includes all landmarks
observed along the trace segment. Based on our empirical
study, a landmark li can be included into subset Sl if one of
the following event occurs: First, the crowd worker passes
by the landmark and observed RSSI makes the indictor
function I(·) = 1 (Eqn. 1); second, more than 60% of the
RSSI observed along the trace segment satisfies rik ≤ −75.

Remark: Instead of labeling remote traces (about 5 ∼
10m) based on Wi-Fi RTTP [18] or RSSI correlation [19], [20]
to reveal the rough skeletal structure, our system constructs
the accurate floor plan with precise information of traces
and landmarks. We associate the trace with a beacon if a
part of the trace is near to the beacon (about 0 ∼ 2m) and
calculate the beacon’s position. We develop a weighted la-
beling method based on dynamic threshold and then design
corresponding methods to update derived labeling weight.
Proposed methods make FineLoc more adaptive to the
random wireless signal propagation and the heterogeneity
of devices.

(c) Landmarks movement

#1 #2

#3
#4
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#3
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Merging SegmentsMerging TraceTrace A Trace B

Room 1 Room 2

#1 #2
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#2

#1
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#4

(a) Trace merging algorithm 
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Fig. 6: Process of trace merging.

5.3 Trace Merging

We now integrate the clustered trace segments obtained
from the previous processes into a skeleton of the floor plan.
This is factually to merge the traces in different relative
coordinate systems to a unified coordinate system. Our basic
idea is to merge two traces first, and then merge the resulted
trace with another trace and so on.

Fig. 6 illustrates an example scenario of the merging pro-
cess. We need to first translate the entire trace so that their
geometric center happens to be the origin of the relative
coordinate system, and then rotate the coordinate systems so
that the landmarks in the two systems can exactly overlap.
Although the BLE landmarks can provide references to
combine the two traces, the relative distances among those
landmarks in the two systems can be different, thus we
need to calculate the misalignment of the landmarks. Such
operations can be tedious to realize in practice especially
when there are a large number of traces needed to be
merged. To address this issue, we present the following
matrix transformation based method.

We use P
A
= (xA, yA) and P

B
= (xB , yB) to denote the

coordinates of the geometric centers of landmarks of trace A
and B, respectively, which can be obtained by averaging the
horizontal and the vertical coordinates of those landmarks.
The two traces have some landmarks in common, and we
use LA and LB to denote the coordinates vectors of those
landmarks in the two traces, respectively. Then we have the
normalized coordinates vectors of those common landmarks
with respect to P

A
and P

B
, which are denoted by L̂A and

L̂B , respectively. We use K to denote the scaling coefficient
for translation, and R the rotation matrix:

R =

[
cosθ sinθ
−sinθ cosθ

]
, (6)

where θ is the angle trace A needs to rotate counterclockwise
to comply with trace B. Trace merging is actually finding
appropriate K and R so that

L̂AKR = L̂B . (7)
To this end, we first construct LM

k = [xAk +yAk , x
A
k −yAk ] and

LN
k = xBk + yBk , Then we can transform equation (7) to the

following: LM [Kcosθ Ksinθ]T = LN , and obtain that
[Kcosθ Ksinθ]T = ((LM )TLM )−1(LM )TLN . (8)

With such results, we can merge trace A and B. We use
the residual error e to denote the misalignment of original
landmarks with respect to the resulted ones, where
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e =

√
|(L̂B − L̂AKR)T (L̂B − L̂AKR)|. (9)

Two traces can be merged if both of the following conditions
are satisfied: First, they must have at least 3 landmarks in
common; Second, the resulted error e < Te, where Te is set
to be 8 steps. This is because if the two traces only have 1
or 2 landmarks in common, they definitely can be perfectly
merged no matter how they deviate from each other.

In FineLoc, e might result from the malfunctioning
step counter or displaced landmarks. In reality, since step
counter error is slowly cumulative and evenly distributed, it
usually leads to a smaller e compared with displaced land-
marks as shown in Fig. 6(b). In contrast, once a landmark
has been moved to another position as shown in Fig. 6(c),
we can hardly merge the traces collected, because landmark
movement leads to a large residual error e. Therefore, by
observing the abnormal residual errors larger than Te in the
trace merging process, FineLoc is able to detect unreliable
landmarks, which are to be updated. This will ensure the
robustness of the system in dynamic environment.

We have merged the two traces as of now, the next step
is to cluster the segments of the traces, so that the trace
segments in different rooms can be recognized. Recall that
each segment of a trace is associated with a set of landmarks
Sl. We define the similarity of Sl and S′l as

Fs(Sl, S
′
l) =

Sl ∩ S′l
Sl ∪ S′l

. (10)

If Fs(Sl, S
′
l) > 0.6, the two segments of traces can be

categorized into the same group in our system according
to our empirical study.

Remark: In contrast to previous works slicing the trace
into segments such as turns or straight lines and then merg-
ing the similar segments [18]–[20], we merge complete traces
directly. The advantage of our method is that we can realize
the overall layout of beacons as shown in Fig. 6. In this way,
we present a method to recognize the movement of beacons
and adapt FineLoc to dynamic landmarks environment.
Note that “segment” in this paper represents the traces
relative to different rooms, in contrast to turns or straight
lines in previous works [19] [20].

5.4 Trace Revising
In trace labeling and trace merging stages, the system

performance highly relies on the accuracy of IMU sensors.
Though posture recognition algorithm has been proposed
and step counter with 98% accuracy has been realized, floor
plan construction also suffers from direction error because
the error in direction will be gradually accumulated as the
user moves on. This problem might lead to serious error,
which however has not been resolved by previous floor
plan construction systems [18] [19] [31] yet. In this section,
we propose a novel scheme to revise user’s direction where
there are two stages: trace self-revising and trace co-revising.

In the trace self-revising stage as shown in Fig. 7(a),
there are three BLE landmarks A,B,C and three turning
points TP1, TP2, TP3. When a user goes through a closed-
loop trace A − TP1 − B − TP2 − C − TP3 − A, we might
obtain a measured trace as shown in fig 7(b) due to IMU
errors. We here define cumulative bias DAA′ as an indicator
of trace accuracy. Intuitively, the system should modify
the values of TP1, TP2, TP3 to minimize DAA′ which can
be formulated into the following optimization problem:

AA

B

C

TP1 

TP2 

Cumulative 

Bias DCC

A

B

C

TP1 

TP2 CC
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C

Virtual 

Trace CA
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A
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Fig. 7: Process of trace revising.

ETP = argmin
ETP

DAA′ , where ETP = {TP1, TP2, ..., TPn}
denotes the sequence of turning points. To address this
issue, our system utilizes particle filter to select TPi to
generate new particles and finally determine ETP .

In practice, we may not be able to obtain a closed-loop
path all the time. To extend our scheme to non-closed-
loop scenarios, we combine trace merging stage and trace
revising stage, which yields a trace co-revising algorithm.
The basic idea is to construct virtual closed-loop path with
merging landmarks. As shown in Fig. 7(c), when the user
generates a non-closed-loop trace A− TP1 −B − TP2 −C ,
self-revising scheme can not work; however, if this non-
closed-loop trace is merged into a global trace, we can
perform co-revising scheme as follows: 1) Determine ro-
tation matrix R and scaling coefficient K (Equation 8),
and place landmarks A,C, Ȧ, Ċ into the same coordinate
system, where Ȧ and Ċ mean landmarks in global trace with
a higher reliability; 2) Move Ȧ to be overlapped with A, and
we obtain a virtual position of landmark Ċ ; 3) Connect A
(or Ȧ) and Ċ to generate virtual trace ĊA; 4) Based on the
closed-loop path Ċ−A−TP1−B−TP2−C , we can define
cumulative bias DCĊ and the problem is simplified into a
self-revising problem.

Remark: For the purpose of IMU error elimination,
previous works [19] [20] propose inter- and intra- trajectory
correcting schemes, which correct traces by merging mul-
tiple similar traces into one trace, thus can not recognize
obstacles as illustrated in Fig. 2. To address this issue, our
data collection and trace merging stages prefer merging
complete traces directly instead of slicing them into smaller
segments (turns and straight lines). However, merging com-
plete traces suffers more from direction error because the
error in direction will be gradually accumulated as the user
moves on. Since previous trace revising method is course-
grained, it is necessary to propose our trace revising method
to eliminate the IMU error.

5.5 Map Pixel Classification
The skeleton of the indoor floor plan can be obtained

with the process as shown in Fig. 8. We can divide the
map into small square sub-regions, each of which can be
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Fig. 8: Map pixel clustering.

regarded as a pixel. Besides pixels covered by those trace
segments, there are still a large number of pixels that need
to be classified as walls, doors, pathways and so on. We here
present our map pixel classification method.

Suppose we have a map skeleton such as the one shown
in Fig. 8, for each pixel, we first calculate the distance
between the pixel and each kind of trace segment. Give a
trace segment of cluster ID i, the distance di is the sum of the
distances between the pixel and the k nearest points in the
trace. Suppose that there are m clusters of trace segments,
then we have {di, i = 1, 2, ...,m}, among which d1min and
d2min denote the shortest and the second shortest distances
respectively. We define d∆ = d2min − d1min. Then we can
classify the pixel according to the following rules:

Pixel role =


Pathway, d1min < 0.5k;

Obstacle, 0.5k < d1min < 2k;

Unknown, d1min > 2k;

Wall, d∆ < 0.5k d2min < 2k.

Note that the distance between the pixel and a single
point in the trace segment can be erroneous due to the
unpredictable abrupt malfunction of the step-counter or the
sudden change of BLE RSSes, that is why we use the k
nearest points in the trace to determine the shortest distance,
where k is set to be 4 in our system; moreover, since the
absolute distance between two pixels is indistinguishable in
a fine-grained map, k also can amplify the distance differ-
ences, so that the pixels can be classified more accurately.

The rationales of the rules presented above are as fol-
lows. The pixel that is 0.5m from a trace is likely to be
a pathway pixel, since the width of the space a walking
human body needs to occupy is around 0.5m. The pixel
satisfies the second rule can be an obstacle, since normally
the dimension of an obstacle in the indoor space is around
2m such as desks and bookshelves. This rule can not 100%
guarantee identifying the obstacles, since there indeed are
some small obstacles such as sofa and chairs; however, if we
have sufficient trace data, such small obstacles still can be
recognized. If the pixel is comparatively far away (2m) from
the nearest trace, we temporarily regard it as an unknown
point; if no other traces are near to it, probably nobody ever
passes by, thus it is indeed unknown. The wall is probably
adjacent to or separate two traces, and the wall is actually
one kind of obstacle thus we let d2min < 2k. Moreover, in
§Section 5.2.2, we define segmented position when we ob-
serve a new cluster. Since the segmented position represents
the border between different rooms, we regard one pixel
as the door when the distance between the pixel and the
segmented position is lower than 0.5k.

Remark: Compared with previous works which can only
sketch the skeleton of floor plan as shown in the left subfig-
ure of Fig. 8, we for the first time develop the map pixel
classification method to realize fine-grained map construc-
tion. With proposed methods, we can construct floor plan
with limited traces, where subrooms and obstacles could be
recognized.

5.6 Map Construction and Localization

After introducing the frame and methodology of Fine-
Loc, we here show how to integrate our proposed schemes
(§Section 5.1 ∼ §Section 5.5) into algorithms to perform
map construction and localization.

Trace Generation Algorithm: In Algorithm. 1, we would
collect data, recognize smartphone postures and generate
user trace. The system generates a new trace when the user’s
posture switching occurs since posture switching would
introduce error in dead reckoning and damage floor plan
construction.

Algorithm 1 Trace Generation

Input: Sensor readings
Output: Labeled trace

for each time slot k do
Parse acc, gra, gyr from sensor readings;
§Section 5.1.2 - Posture recognition
Recognize smartphone posture Post;
if Posk 6= Posk−1 then

Generate a new traceid;
else

Update position pk;
§Section 5.2.1 - Trace Labeling
Parse RSSI series f i = {ri1, ri2, ..., rim};
if I(·) = 1 (Eq. 1) then

if rik <= rimax then
Calculate w(rik, r

i
max) andW(li) (Eq. 2);

else
Update r′max = rik andW(li|r′max) (Eq. 3);

end if
Attach landmark li to trace (Eq. 4);
§Section 5.4 - Trace self-revising
if li is historical landmark of this trace then

Revise trace and obtain ETP ;
end if

end if
§Section 5.2.2 - Label trace segments
Calculate dissimilarities Vk,k+1 (Eq. 5);
if Vk,k+1 > 30 then

Generate new cluster and obtain segment set Sl;
end if

end if
end for

Floor Plan Generation Algorithm: The purpose of Algo-
rithm. 2 is to merge, revise trace and finally finish map pixel
classification. Here we define collected trace space ELocal

T

and merged trace space EGlobal
T , where ELocal

T denotes the
traces collected by users and EGlobal

T represents the traces
after merging. With more traces collected and merged, we
can enlarge the scale and reliability of EGlobal

T . Finally,
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Fig. 9: Process of floor plan generation.

detailed floor plan would be constructed through map pixel
classification scheme.

We use Fig.9 to illustrate how the floor generation algo-
rithm works. As shown in Fig.9(a), we collect trace A, C,
B sequentially. Since trace A and C have no intersection,
we first consider that they belong to different indoor maps.
Once trace B is collected, we can merge trace A and B
via trace merging module and derive trace AB. Meanwhile,
since there exists intersection between trace AB and C, we
finally merge all traces and construct more completed floor
plan. Proposed methods can be directly employed in multi-
floor or multi-building scenarios without any modification.
As shown in Fig.9(b), there are four traces A, B, C, D coming
from different buildings. In our system, we derive BLE’s
MAC address to uniquely identify different landmarks.
Differing from Wi-Fi which covers a hundred-meter-radius
area, BLE can only cover limited area, which means no
interface among multiple floors or multiple buildings. Since
there can never be landmark intersection between traces
coming from different indoor maps, we thus independently
construct respective indoor map (AC and BD).

Localization Phase: In the mapping phase, our system
utilizes the crowdsourced data to construct finer-grained
floor plan. Meanwhile, FineLoc attempts to localize the user
with collected data. In previous work, dead reckoning [17]
and fingerprinting based [14] [18] [19] localization schemes
have been employed for localization. With the improvement
of IMU accuracy, dead reckoning shows higher reliability
than fingerprinting within a small region. To further elimi-
nate cumulative error of dead reckoning, landmarks could
be utilized.

In this paper, localization is based on dead reckoning and
BLE landmarks. Compared with traditional landmarks (for
example, water dispenser and turns [31]), BLE landmarks
show higher reliability and uniqueness. Specifically, the sys-
tem first generates user’s trace and then determines which
map the trace belongs to. Due to uniqueness and limited
coverage of BLE nodes, it is simple to find corresponding
map. It should be noted that when new landmarks are
detected, we would perform mapping phase to construct
a new region map. Secondly, to localize the user, we just
need to merge his/her trace into existing floor plan, where
rotation matrix R and scaling coefficient K are required.
Therefore, according to the merging rule in Equation. 7,

Algorithm 2 Floor Plan Generation

Input: Collected trace space ELocal
T , merged trace space

EGlobal
T

Output: Finer-grained floor plan
for all trace TA, TB ∈ ELocal

T ∪ EGlobal
T do

Calculate overlapping landmarks LA and LB

if size(LA) and size(LB) >= 3 then
§Section 5.3 - Trace megring
Determine R, K and e (Eq. 8,9);
if e > Te then

Determine dynamics of landmarks;
else
§Section 5.4 - Trace co-revising
if TA or TB ∈ EGlobal

T then
Perform trace co-revising

end if
Merge trace TA,TB and obtain global trace TG;
Add global trace TG into trace space EGlobal

T

Merge the same segment; (Eq. 10);
§Section 5.5 - Map pixel classification
Perform map pixel classification for trace TG;

end if
end if

end for

we can obtain P = (PA − P
A
)KR + P

B
, where PA

denotes the position in current trace’s coordinate system, P
represents the position in global floor plan, P

A
= (xA, yA)

and P
B
= (xB , yB) denote the coordinates of the geometric

centers of landmarks of trace A and B.

6 PERFORMANCE EVALUATION

6.1 Experimental Setups

We implement FineLoc on different Android phones
(HUAWEI Mate 7, InFocus M512, Nexus 5) and conduct ex-
periments in three buildings to evaluate our proposed mech-
anisms, where the first testing environment is a 10000m2

pathway area in a classroom building, the second is a 500m2

area in an office building with rooms, and the third is a
1200m2 wide area, where the floor plans are shown in
Fig 10.
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(a) Classroom building (pathway) (b) Office building (subroom) (c) Library (open area)

Fig. 10: The ground truth of three scenarios
TABLE 2: Accuracy of Floor Plan

Scenario Mean error 80% error Proom Rroom Froom Pobstacle Robstacle Fobstacle

Classroom (pathway) 0.97m 1.32m N/A N/A N/A N/A N/A N/A
Office (subroom) 0.81m 0.91m 81.3% 83.8% 82.5% 68.7% 64.8% 66.7%

Library (open area) 1.21m 1.57m N/A N/A N/A 61.6% 53.0% 57.1%

6.2 Accuracy of Posture Recognition

We enroll 5 volunteers to test the accuracy of the pro-
posed posture recognition scheme. Each volunteer is asked
to walk 400 steps twice, during which freely switching
postures is encouraged. We record the time consumed by
each walk, the duration and the number of steps for each
posture. Fig. 11(a) shows the experimental results in time,
where the horizontal axis is the index of the experiment
and the vertical axis is the proportion of time each posture
is correctly recognized; we can see that the scheme can
correctly identify different postures in more than 99% of the
time, where most of the can-not-tell situations occur during
the posture switching. Fig. 11(b) shows the results in the
number of steps, which corroborates the results in Fig. 11(a).
We can see that only situations with less than 4 steps may
be incorrectly identified for each posture.

(a) Accuracy in time

(b) Accuracy in num. of steps

Fig. 11: Accuracy of posture recognition

6.3 Performance of Map Construction

We construct the indoor floor plans of the three testing
areas, and randomly select a number of points, including
420 points from the classroom building, 154 points from
the office building and 249 points from the library. Those
points are then compared with the corresponding points
in the real map to find the deviation. There are 18 and 68

obstacles in the office building and the library respectively;
the pathways in the classroom building contain no obstacles.
We evaluate the proposed map construction mechanism
in terms of the 8 metrics as tabulated in TABLE 2. Note
that the first 5 metrics are also used in SensorWit [31] and
CrowdMap [36], where Proom =

|Sgenerate∩Strue|
|Sgenerate| ,Rroom =

|Sgenerate∩Strue|
|Strue| ,Froom = 2× P×RP+R .

We can see that Proom denotes the ratio of correct sub-
room area to generated area while Rroom means the radio
of correct sub-room area to ground truth. Froom combines
Proom and Rroom. Since there is no sub-room in classroom
and library, the second and fourth rows employ N/A in
TABLE 2. Meanwhile, since our proposed mechanism is also
able to recognize obstacles, we utilize Pobstacle, Robstacle

and Fobstacle to verify the performance of obstacle construc-
tion. In particular, the definition of Pobstacle, Robstacle and
Fobstacle is also similar to that of Proom, Rroom and Froom.

(a) One trace (b) Two traces (c) Three traces (d) Four traces

Fig. 12: Floor plan of classroom building.

Fig. 12 shows the layout of the classroom building and
the constructed pathway map. We deploy 16 landmarks
along the 500m-long pathway. We only utilize 4 traces to
construct the map, which takes less than 20mins. This out-
performs the Walkie-Markie and PiLoc, where the perfor-
mance are 260m within 50mins and 150m within 10mins
respectively. This is because we record long trace segments
instead of dividing the trace into very small segments in
previous systems [18]–[20]. This will save the amount of
data required and improve the data processing efficiency.

Fig. 13 shows the layout of testing area in the office
building, where there are 8 rooms and 13 landmarks de-
noted by red stars. In contrast to existing scheme that can
only profile pathways, the FineLoc can sketch the outlines of
rooms, obstacles, doors and pathways, which are in the color
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(a) Before landmarks movement (b) After landmarks movement

Fig. 13: Floor plan of the office building area.

of black, grey, blue and white in the figure, respectively. The
map shown in Fig. 13 (a) is constructed after 20mins of
volunteers’ free activities, and that shown in Fig. 13 (b) is
constructed while 5 out of the 13 landmarks are moved to
somewhere else, which shows the capability of automatic
landmark updating.

(a) 10 minutes (b) 1 hour

(c) 2 hours (d) Ground truth

Fig. 14: Floor plan construction of university library

Fig. 14 shows the layout of the testing area in the library,
where there are 68 obstacles and 16 landmarks denoted by
red stars. Compared with existing scheme that can only
sketch the outline of the whole building, the FineLoc can
sketch obstacles in details, which is in the color of grey. The
map shown in Fig. 14(a) is constructed after 10 mins of
volunteers’ free activities, and those shown in Fig. 14(b)(c)
are constructed after 1 hour and 2 hours of volunteers’ free
activities. Then we have placed the floor plan into a ground
truth and show the performance with a 16.2% obstacles
missing and 20.6% extra obstacles in Fig. 14 (d).

6.4 System Comparison

In this section, we compare the FineLoc system with
existing methods to verify that FineLoc can realize finer-
grained indoor map construction. During experiments, we
collect Wi-Fi/BLE signals and construct floor plan based on
PiLoc and FineLoc. In particular, existing Wi-Fi floor plan
construction methods can only sketch the skeleton of floor
plan as shown in Fig. 15(a). Meanwhile, there is also false
trace merging due to failed correlation detection. In contrast,

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15
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(b) Floor plan (FineLoc)

Fig. 15: Map construction comparison

FineLoc can recognize different subrooms, obstacles, walls
and doors. Thus we can realize finer-grained floor plan
construction as shown in Fig. 15(b).

To verify the performance of subroom recognition and
obstacles recognition, we then compare our system with
SensorWit. As shown in TABLE. 1, one important advantage
of FineLoc is unique calibration. It means that FineLoc
can simultaneously construct multiple indoor maps without
interrupting each other. In addition, FineLoc can realize a
higher accuracy as shown in TABLE. 3.

TABLE 3: System Comparison

System FineLoc PiLoc SensorWit
Froom 82.5% Not work 76.0%

Fobstacle 57.1% ∼ 66.7% Not work Not work

6.5 Localization Performance

There are 45 landmarks employed in our system. To
measure the performance of landmark’s position, we show
the results in Fig. 16(a), where 80% errors are less than
1.0m, 0.5m and 1.2m respectively. Meanwhile, We collect
84 traces from the three buildings, and select 2459 points
in buildings to perform location estimation, where there
are 475 points from the classroom building, 726 points
from the office building and 1258 points from the library.
We utilize BLE beacon nodes and the smartphone to do
localization experiments. The resulted CDFs are illustrated
in Fig. 16(b), where 80% errors are less than 1.4m, 1.1m
and 1.6m respectively. We can see that our system performs
stably in different indoor environments.

Fig. 16(c) shows the localization results of dynamic en-
vironment, where BLE landmarks can be moved to other
places. The experiments are conducted in the office building.
We move 5 out of 13 BLE nodes to other randomly selected
places and then perform the map updating and location es-
timation simultaneously. We can see from Fig. 16(c) that the
localization error increases dramatically when BLE nodes
are moved, because the smartphone may consider the BLE’s
current position as the position in the original constructed
map. However, with our map updating scheme, the new
map accommodating the current locations of the BLE nodes
can be generated after around 20mins of the volunteers’ free
activities.

7 DISCUSSIONS

Device heterogeneity: When conducting experiments,
we can observe notable device heterogeneity. This might
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(a) Landmarks position error (b) Localization error (c) Dynamic environment

Fig. 16: Localization performance.
result from several reasons such as hardware implementa-
tions and placement of beacons. To measure 45 BLE nodes
employed in our system (16 in classroom building, 13 in
office building and 16 in university library), we plot histor-
ical maximum RSSIs in Fig. 17(a). This indicates that it is
necessary to perform our trace labeling algorithm instead of
a fixed RSSI threshold method.

Deployment of BLE Beacons: As shown in Fig 12, 13 and
14, the densities of BLE nodes are 0.18/100m2, 2.6/100m2

and 1.3/100m2 respectively. This means that the proposed
mechanism can work with sparsely populated BLE nodes.
In real situation, the sub-room structure such as the office
building area shown in Fig. 10(b) requires the most iBeacons
to construct the floor plan. It is because that at least one iBea-
con is necessary to label each room (§Section 5.2.2). Even
so, FineLoc can construct fine-grained floor plan shown in
Fig. 13 with limited BLE nodes. Moreover, due to proposed
trace labeling and merging mechanism, FineLoc prefers the
BLE Beacons that are easier to be in reach of people. It is
because that the trace labeled with more landmarks can be
merged and revised with less error.

System cost: During our experiments, the cost of each
iBeacon is about $6 [37], which leads to $0.01/m2, $0.16/m2

and $0.08/m2 cost under the three scenarios shown in
Fig. 10. We can thus construct fine-grained floor plan with
the cost less than $0.16/m2. Such cost can be easily accepted
for localization applications.

Scanner of BLE RSSI: Compared with Wi-Fi scanner,
the activation rate of general BLE scanning on smartphone
might be low. Through our experiment we find that BLE
scanner on smartphone just works in Android 4.3 or higher
version and obtains RSSI each 3-5 seconds sometimes.
Fortunately, current Android version is normally newer
than Android 4.3 and we can improve the scanning rate
to 1 time/second. This can be realized by turning on
and off BLE adapter periodically using adapter.stopLeScan()
and adapter.startLeScan(). This would increase scanning rate
without incurring much energy consumption (Fig. 17(b)).

Energy consumption: The energy consumption of BLE
nodes is low; however, scanning BLE beacon signals will
consume energy in users’ mobile devices. As we mentioned,
we could improve the scanning frequency of the mobile
device to detect the BLE beacon signal, but will this incur
higher energy consumption in the mobile device? We find
the answer to the issue through experiments, for which we
set the scanning interval to be 1s for 3 kinds of Android
phones (HUAWEI Mate 7, InFocus M512, Nexus 5). We
maintain the scanning process for 4 hours and show the en-
ergy consumption results in Fig. 17(b). We can observe that
the resulted energy consumption by improving the scanning
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Fig. 17: Device heterogeneity and energy consumption.
frequency is slightly higher than the default configuration,
but still lower than half of that for scanning Wi-Fi. For the
other two kinds of Android phones, we can observe similar
results during the experiments.

8 CONCLUSIONS

In this paper, we propose FineLoc, a finer-grained self-
calibrating indoor localization system based on RSSI of wire-
less signals. Existing wireless indoor localization system
can only sketch coarse-grained trace floor plan. However,
FineLoc can adapt itself to various environments and sketch
room outline, doors and obstacles. Through experiments,
we show a finer-grained floor plan with 80% error less than
2.5m and 80% localization error less than 1.6m. Besides,
FineLoc works normally under heterogeneous equipment
and dynamic environment. It can update landmarks’ posi-
tion and the floor plan automatically.
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