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Abstract—In this paper, we propose a tree modeling-based data
mining method to detect anomalies from crowdsourced network
data. We design an algorithm to extract potential network
anomalies from decision trees. Moreover, we propose a criteria
to evaluate the severity of anomaly in terms of three factors:
standard deviation, weight sum and impurity decrease. To en-
hance generalization performance, we randomly generate sample
subspace of the original dataset as the input for each subtree
and compact detected anomalies from all subtrees. We carry out
experiments based on the crowdsourced network measurement
dataset containing five million samples, which contains round trip
time (RTT) from more than 5,000 users. Experiments show that
the proposed method can effectively detect high-latency network
anomalies. Moreover, the random forest-based approach can
achieve an improvement of approximately 25% of generalization
performance compared to the single decision tree approach.

Index Terms—Network Anomaly Detection, Crowdsourcing,
Decision Tree, Random Forest

I. INTRODUCTION

Today, OTT business is growing rapidly due to the extensive
coverage of the mobile Internet. In OTT, users can access
a variety of services provided by Internet companies, such
as video streaming and text transmission, through traditional
networks. Unlike traditional communication services, OTT
only utilizes the carrier’s underlying network support, while
business services are provided by Internet companies. For
example, based on the network broadband service provided by
the telecom operator, WeChat can provide video chat service
to users.

In order for the OTT service to be available globally,
the coverage of the underlying network channel provided by
the operator must be large enough to cover as many users
as possible. Therefore, an integrated network of multiple
ISPs is used as the backbone network of the OTT service.
Unfortunately, the instability of the backbone network, such
as frequent network failures, has had a serious negative impact
on the quality of service (QoS), causing huge losses to Internet
companies.

The fundamental reason behind the decline in OTT service
quality is the lack of effective operation and maintenance
methods to cope with the network failures under the large
scale network architecture. In the near future, network scale
and network complexity will both increase dramatically, such
as the upcoming Internet of Things (IOT) era. However,
traditional network operation and maintenance methods are
costly in supporting sustainable operations. Therefore, how to
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Fig. 1. The control loop of network operation and maintenance

theoretically reconstruct the operation and maintenance mode
of the OTT network scenario is an urgent problem to be solved.
One step further, the most important thing of the operation
and maintenance system is how to effectively deal with the
network anomaly of the OTT large-scale network, so that the
entire network can be operated in a targeted manner.

Figure 1 illustrates the control loop for network operation
and maintenance. The entire process is divided into three
phases: monitoring, decision making, and execution. In the
OTT scenario, the information service quality of the network
will directly determine the user experience, thus determining
the core competitiveness of the Internet company. Therefore, in
the design of large-scale network operation and maintenance
systems, it is necessary to introduce a new management ar-
chitecture based on intelligent decision-making. This first puts
forward new requirements for network measurement methods
in the monitoring stage, namely how to obtain network mea-
surement information in large-scale networks efficiently at a
low cost.

Currently there are two main types of traditional network
measurement methods.: (1) Active measurement. The packet
probe is sent to the target network location to collect mea-
surements of related network performance metrics, such as
RTT and packet loss rate. The disadvantage is that only the
network performance between the probe and the target being
measured can be obtained, and the accuracy and effectiveness
of the measurement depends on how to select a suitable
observation path. In addition, the cost of deployment of active
measurements is high and it is difficult to deploy on a large
scale.; (2) Passive measurement. It captures traffic information
with the help of the specific devices deployed on network
links. The disadvantage is that it is difficult to measure the end-
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to-end performance experienced by users. Apart from that, it
requires customized hardware support so that the deployment
cost is also high.

While the traditional network measurement methods can
not meet the requirements of OTT, some work adopts the
crowdsourcing strategy of collecting network measurement
data from a large number of users. For example, MopEye [1]
can provide large-scale network performance data based on
end-to-end crowdsourcing, and then use traditional statistical
methods to perform simple mathematical analysis. CniCloud
[2] collect cellular network data by crowdsourcing from var-
ious devices and provides some simple analysis tools. [3]–
[5] extract the relation between network performance and
other features through mathematical analysis. In addition, the
DYSWIS system [6] chooses collecting experts’ suggestions to
build a rule system for anomaly detection and troubleshooting.
Espinet deployes measurement probes on each link of the
network, thus crowdsourcing traffic information to rule out
network failures [7]. Bischof obtaines the relevant character-
istics of ISP by crowdsourcing information from the network-
intensive application running on the terminal system [8].

However, for such large-scale crowdsourced datasets con-
taining a large amount of noise, traditional mathematical
methods lack robustness and cannot effectively utilize the
correlation of various feature dimensions of the data. In
general, we are facing the following challenges:

1) The dataset contains multiple anomalies which are
caused by various types of factors with different dimen-
sions.

2) Depending on the degree of performance degradation
and the extent of the impact, each anomaly’s severity is
different.

3) Crowdsourced data is noisy and inaccurate due to the
influence of devices and environment while collected
discontinuously in time.

In order to cope with the challenges brought by the crowd-
sourced network measurement data, we propose a data mining
method to detect high-latency network anomalies. We utilize
decision trees model to extract all possible anomalies from
the dataset. Concretely, we obtain anomaly information by
analyzing the tree structure which is generated from crowd-
sourced data. Moreover, we propose a criteria to evaluate each
anomaly’s severity thus we can select out important anomalies
which have a larger influence on the network. Finally, with the
help of random forest, we optimize our analysis model to be
more robust and general.

To the best of our knowledge, we are the first to investigate
anomaly detection based on crowdsourcing and decision trees.
The main contributions of this paper are as follows:

1) We propose a data mining method to extract the cause
of network anomaly based on decision trees’ structure.
While existing works mainly use decision trees for
predictions, decision trees‘ interpretability can help ue
further exploiting the hidden information of network
anomaly. Results show that we can efficiently extract all

potential cause of network anomaly from crowdsourcing
dataset.

2) We propose “confidence”, a criteria to evaluate the
anomaly severity objectively according to the degree of
performance degradation and the scale of impact. We
choose three factors to quantify the anomaly severity:
standard deviation, weight sum and impurity decrease.
Experiments in Section 5 also proves the accuracy of
the criteria.

3) We propose a robust forest-based data mining algo-
rithm by integrating our single tree-based approach with
random forest. We utilize bootstrapping sampling to
generate random sample subspace of the original dataset
as the input for each subtree. Then we compact all their
mining outputs to get final results. By applying the idea
of random forest, the variance of the model can be
reduced and the generalizaion can be enhanced.

The remainder of this paper is organized as follows: Section
2 introduces the preliminaries of our work and the basic idea of
our modeling approach. In Section 3, we present the detailed
design of the anomaly mining, including data exploration and
tree modeling. Section 4 unveils the design of evaluation
criteria. Experiments are given in Section 5. We conclude our
work and give a glimpse of the future work in Section 6.

II. OVERVIEW

A. Dataset

MopEye [1] is an Android-based application that auto-
matically collects RTT information, which is accurate to the
granularity of the user and the application being used.

Therefore, compared to other network measurement tools
such as Mobiperf [9], MopEye measurement does not generate
network overhead, and the measured RTT can accurately
reflect the network latency experienced by each application.
In addition, MopEye can run on Android smartphones without
root privileges, which greatly reduces the barriers to crowd-
sourcing. MopEye uploads the RTT and other information such
as the user’s location and signal strength to the server.

The collection of MopEye crowdsourcing network measure-
ment datasets lasted from May 2016 to January 2017, resulting
in more than five million RTT measurements.So far, MopEye
has attracted 4,014 user installations from 126 countries. The
dataset includes 5,252,758 RTT measurements from 6,266 An-
droid apps from 2,325 smartphones. A cumulative distribution
function diagram of the application’s raw RTT values and RTT
median values is shown in Figure 2 [1]. From the left image,
we can see that about 70% of the original RTT values are
distributed below 100ms. The figure on the right shows the
distribution of the median RTT of 424 applications with more
than 1000 measurements.

B. System Architecture

The system architecture is composed by two stages, as
shown in Figure 3:

Rule Mining: We first focus on cleaning and processing
the raw data to make it more explainable and better fitted in
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Fig. 2. CDF plots of apps’ raw RTTs and median RTTs

TABLE I
NEW FEATURES AFTER FEATURE ENGINEERING

Features Dimensions Type
AppName 4000+ Categorical
Carrier 2000+ Categorical
Signal 5 Ordinal
Speed 5 Ordinal
SynHour 24 Categorical
Longitude 36 Ordinal
Latitude 18 Ordinal
DestLongitude 36 Ordinal
DestLatitude 18 Ordinal
NetType 2 Categorical

the modeling stage. After that, we build decision trees model
with CART algorithm [10] on the basis of processed dataset.
According to the information provided by tree structure, we
can extract rules in a comprehensive way, where rule indicates
the potential cause leading to network anomalies.

Rule Evaluation: After tree modeling, we obtain all candi-
date rules. We design “confidence”, a criteria to evaluate each
rule’s severity according to its degree of performance degrada-
tion and the range of impact. The criteria is composed by three
factors: standard deviation, weight sum and impurity decrease.
Moreover, to achieve a better generalization performance, we
utilize random forest to generate a bunch of subtrees. We apply
the criteria to the forest and compact their outputs to get the
final results.

III. RULE MINING

In this section we focus on the mining of rules from the
dataset. To achieve a better performance, we first preprocess
the raw dataset from two aspects: feature engineering, instance
clustering. Then we describe the detail of the decision tree
modeling and the procedure of rules mining.

A. Data Exploration

1) Feature Engineering: The presence of outliers and miss-
ing values in the dataset can cause model bias and degrade

Rule Mining

Data Preprocessing

Tree Modeling

Rule Evaluation

Confidence Evaluation

Forest Aggregation

MopEye 
Dataset Result

Fig. 3. System Architecture

TABLE II
NOTATION LIST

Notation Implication
x The node or the rule
N(x) Number of samples in x
Sx Sample subspace of x
K Number of classes
Pk
x Class proportion of label k in x

yi Label of i-th sample
wi Weight of i-th sample
W (x) Weight sum of x

Fig. 4. The weight of instances decreases as the expectation increases. (The
green dots represent normal instances while the red dots represent anomaly
instances).

the performance of the model. On the one hand, a reasonable
value interval is set for each feature to remove outliers. For
example, the signal strength needs to be distributed between
-100 and 0. On the other hand, for simplicity and efficiency,
the missing values are complemented by the average of the
features. All features are converted into standard numerical
forms and discretized into an ordinal vector like {1, 2, 3 · · ·n}.
The features after engineering are displayed in Table I.

2) Instance clustering: From the dataset, we can be ob-
served that the RTT value fluctuates within a large range
under the same measurement scenario. In order to better
characterize the RTT performance, we cluster all samples with
same features into “instances”. If the RTT expectation and
standard deviation of the instance sample subspace are both
less than the threshold, the instance is marked as normal,
otherwise anomaly. In the experiment, we set the thresholds
for expectation and standard deviation to 160 and 100, re-
spectively, where 160 is the RTT expectation of all samples.
In addition, we use the reciprocal of the standard deviation
as the weight to measure the quality of the instance, with an
upper bound as 1.

In fact, the RTT expectation of an instance has a negative
correlation with its weight, as shown in Figure 4. The y-
axis represents the instance weight and is represented by the
logarithm of 10. It can be seen that the weight sum of the
anomaly instance is less than the weight sum of the normal
instance, leading to the problem of class imbalance and the
bias of the model. Therefore, we stretch the two classes’
weight sum to be equal by multiplying a fixed factor to normal
instances’ weight.
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B. Tree Modeling

In Section 2, we introduce the basic idea to extract rules
from decision trees. Here we introduce the details of the
decision tree modeling.

1) Mining Procedures: We utilize a toy example to illus-
trate how we extract rules from decision trees. Table III shows
the mini dataset with five instances, where NetType and Speed
are features and Performance is the label. NetType has two
cases 0 and 1 and Speed has three cases from 0 to 2, while
Performance is classified with normal and anomaly. Then we
build decision tree-based on the dataset as Figure 5 shows. To
deduce rules from the tree, We traverse all nodes except for the
root node and obtain information from their ancestor nodes.
For sample subspace of node 1, they all satisfy “NetType=0”,
which is the split of their parent node. Therefore, we obtain
our first potential rule as {“NetType=0”}. For node 2, we
observe its Gini 0.5 is larger than parent node’s 0.32. Because
of the increase of impurity, this node is not informative
enough to extract rules and we just skip it. For node 3, it has
two ancestor nodes, which raises the feature requirements as
“NetType�=0” and “Speed≤0.5”, thus we can derive the poten-
tial rule as {“NetType=1”,“Speed=0”}. Similarly, the sample
subspace of node 4 satisfies “NetType�=0” and “Speed¿0.5”,
which forms two potential rules {“NetType=1”,“Speed=1”}
and {“NetType=1”,“Speed=2”}. However, the latter one
leads to an empty sample subspace and we only keep
{“NetType=0”,“Speed=1”} as valid rule. Now we have tra-
versed all nodes and extracted 3 rules from the decision tree.

To give a brief analysis, we can find that there are total
11 kinds of potential rules (5 for one feature type and 6 for
two feature type). How can decision trees finish the filtering
of rules? The first reason is that decision trees are generated
from existing samples. Feature combinations leading to empty
sample subspace will not be expressed in decision trees. For
example, there will not exist a tree node that requires Speed
to be 2 and NetType to be 1 because there are no instances
satisfy this requirement. The second reason is that rules which
is not informative will be eliminated implicitly due to the
greedy property of decision trees. For example, eliminated rule
{“Speed=1”} contains two samples with one being anomaly
and another being normal, this is obviously not informative
while valid rule {“NetType=0”} leads to three samples all
being anomaly.

2) Criteria Analysis: We measure impurity of tree nodes
or rules by Gini. Gini means the possibility of two randomly
selected samples belonging to different classes. Here We carry
a simple analysis on Gini to find out its relation to the impurity
of nodes. We present a notation list displayed in Table II.
Assume samples are classified with labels from 1 to K. We
can calculate the proportion of each class on node x as:

P k
x =

∑
i∈Sx

wi × I (yi = k)

W (x)
. (1)

The Gini of node x is calculated as:

G(x) =

K∑
k=1

P k
x (1− P k

x ) = 1−
K∑

k=1

(
P k
x

)2
. (2)

Then we can obtain the variance of class proportion in x:

D (Px) = 1/K
K∑
j=1

(
P j
x − P̄x

)2
= 1/K

K∑
j=1

(
P j
x − 1

K

)2

= 1/K

K∑
j=1

((
P j
x

)2 − 2

K
P j
x +

1

K2

)

= 1/K(
K∑
j=1

(
P j
x

)2 − 1

K
).

(3)
According to equation 2 and equation 3, we get the relation

between variance and Gini:

G(x) = 1− (K ×D (Px) + 1/K). (4)

We can observe that when K is fixed, there is a linear
relation between class proportion’s variance and Gini. The
bigger the variance is, the smaller the Gini is. To be noticed,
big variance implicitly means the samples are more deviated
to one class, thus leading to a relatively pure node. Therefore
,we can conclude that smaller Gini indicates smaller impurity.

3) Node Spliting Strategy: According to CART [10], each
tree node will be split into two child nodes to decrease
impurity. To extract all potential rules, we set no depth limit for
the generation of decision trees. The tree node will continue
spliting until reaching completely pure, i.e., Gini equals to
0. However, if we prune the tree to avoid overfitting, we
have to suffer the loss of potential rules as the shrinkage of
tree structure. Therefore, We propose another method based
on random forests in Section 4 to increase the generalization
performance.

There are categorical and ordinal features as we can see in
Table II. For different kinds of feature, the strategy to find the
best spliting point also varies. Define all possible splits as set
R, the performance of one certain split θ can be measured as:

G(Sx, θ) =
W (Sl)

W (x)
G(Sl) +

W (Sr)

W (x)
G(Sr), (5)

where Sl and Sr represent two child nodes generated by split
θ. Then we need to traverse all features to find split θ∗ that
minimizes equation 5:

θ∗ = argmin
θ

(G(Sx, θ)). (6)

If feature v is ordinal with m unique values, we first sort
them in ascending order: {v1, v2, · · · , vm}. We can observe
that there are m− 1 possible splits from v1 to vm−1 and we
traverse all to find the best one for this feature. The sample
subspace of Sl and Sr can be represented as below, where
1 ≤ i ≤ m− 1:
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TABLE III
MINI DATASET

NetType Speed Performance
0 0 anomaly
0 2 anomaly
0 1 anomaly
1 1 normal
1 0 anomaly

TABLE IV
EVALUATION OF RULES

Rule Label Confidence
NetType=0 anomaly 0.48
NetType=1, Speed=0 anomaly 0.16
NetType=1, Speed=1 normal 0.16

Sl(vi) = {s ∈ Sx | v(s) ≤ vi},
Sr(vi) = {s ∈ Sx | v(s) > vi}.

(7)

If feature v is categorical with values {v1, v2, · · · , vm},
there are total 2(m−1) − 1 possible splits, which is a huge
number of cases to check. According to CART [10], the search
space can be reduced to m − 1, as equation 8 shows, where
1 ≤ i ≤ m− 1:

Sl(vi) = {s ∈ Sx | v(s) = vi},
Sr(vi) = {s ∈ Sx | v(s) �= vi}.

(8)

After obtaining the best splits of all features, we compare
the performance of them to determine the final spliting point
of this node.

IV. RULE EVALUATION

After obtaining all rules from decision trees, we now focus
on evaluating rules to obtain anomalies’ severity. We propose
“confidence” as the evaluation criteria which is composed by
three factors: standard deviation, weight sum and impurity de-
crease. Moreover, we enhance the generalizaion performance
of our method by utilizing random forests. We introduce the
details of forest generation and present the holistic algorithm
of the forest-based approach.

A. Evaluation criteria

We first compare the weight sum between anomaly instances
and normal instances in the rule’s sample subspace and then
label the rule with the larger one’s class. Equation 9 shows
the three factors for calculating the confidence:

C(x) = std(x)×W (x)× I(x). (9)

For a certain rule x, the standard deviation of class propor-
tion is defined as:

std(x) =

√
1

K

∑
k

(P k
x − 1/K)

2
, (10)

where P k
x stands for the proportion of instances labeled as

class k. High standard deviation implies the instances are more

NetType = 0
Gini = 0.32

Class = anomaly

Speed ≤ 0.5
Gini = 0.5

Class = normal

Leaf Node
Gini = 0

Class = anomaly

Leaf Node
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root

node1

node2

node3
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Fig. 5. Decision tree generated from the mini dataset.

biased to the rule’s label, which deserves more confidence.
Thus this metric will help to select out the biased and infor-
mative rules while eliminating those trivial rules. Moreover, a
rule with more instances is obviously more reliable. Therefore,
we calculate the sample subspace’s weight sum as the second
metric:

W (x) =
∑
s∈Sx

ws. (11)

IQ(x) = std(x)×W (x). (12)

We define the multiplication of the above two metric as
instance quality, as equation 12 shows. Higher instance quality
deserves larger confidence; e.g., all instances are labeled with
the same class and have a large weight sum. However, it is
not persuasive enough just to take instance quality as the rule’s
confidence. Because of the greedy spliting of decision trees,
the rule extracted from the shallow layer of the tree always
contains much more instances than the rule extracted from the
deep layer. For example, {“Verizon”} and {“Verizon”, “LA”},
the former rule contains much more instances for it has no
limit on the user location. This implicitly means shollow rule
is easier to get a high instance quality for it has a bigger weight
sum of sample subspace. For example, in binary case where
classes are only normal and anomaly, assuming one shallow
rule’s weight sum is ten times larger than one deep rule’s,
even if the deep rule has the maximal standard deviation 0.5,
the shallow rule’s standard deviation only need to reach 0.05
to get higher instance quality. Obviously it is not that fair for
deep rules. Therefore, a penalty term is needed to give proper
punishment according to the depth of the rule. Here we choose
impurity decrease as the penalty metric:

I(x) = G(r)−G(nx), (13)

where r stands for the root node and nx stands for the
node that the rule x lead to. As introduced in Section 2,
deeper nodes in decision trees tend to have smaller Gini.
As depth of the rule’s node increases, the impurity decrease
also increases. Thus we can conclude the impurity decrease
implicitly represents the depth of rules. Therefore, the shallow
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rule’s confidence will be decreased due to smaller impurity
decrease. Moreover, the degree of penalty is controlled by the
impurity of rule’s node. For example, if a shallow rule leads
to a relatively pure node, the impurity decrease is also large
thus the penalty will be weaken.

Here we explain the evaluation process with the help of
the toy example shown in Section 3. First we label rules
according to its sample subspace. From Table III, we can
observe that {“NetType”=0} and {“NetType”=1, “Speed”=0}
are anomaly and {“NetType”=1, “Speed”=1} is normal. For
{“NetType=0”}, the standard deviation of it is 0.5 and the
weight sum is 3. The impurity decrease is calculated as
0.32 - 0.0 = 0.32. Thus the confidence of {“NetType”=0} is
0.5 × 3 × 0.32 = 0.48. Other rules’ confidence is calculated
in the same way as shown in Table IV and we rank them in
descending confidence order.

We can see {“NetType=0”} has the highest confi-
dence because it leads to three anomaly instances while
{“NetType=1”,“Speed=0”} has a relatively lower confidence
for having only one anomaly instances. To be noticed, we only
consider binary class which are only anomaly and normal. In
future work, we would like to extend binary case to multi-
class case to enhance the granularity of anomaly detection,
e.g. trivial anomaly and severe anomaly.

B. Enhancement of Generalization and Robustness

We first import randomness into the building of subtrees.
For each subtree, we randomly produce a subspace of the
original dataset as the input with the help of bootstrapping
sampling [11]. Suppose original dataset D has N instances,
we randomly select an instance with replacement and put it
into the target dataset D∗. Repeating this operation for N
times, D∗ will get about 63 percent instances of D. For the
spliting of each tree node, suppose we have M features, we
randomly select

√
M features to search for the best split.

To achieve a balance between performance and model
complexity, we determine the number of subtrees needed to
build by utilizing two metrics: (1) Out of Bag (OOB) score. (2)
Average prediction accuracy. The basic idea of OOB is each
subtree could be tested by the instances not involved in the
training of this subtree, which can be represented as D−D∗.
Breiman proves that OOB score can get the same accuracy
as the test set does [12]. Thus OOB can be used to measure
the generalization performance of random forest. Moreover,
we ues 10-fold cross validation to measure the prediction
performance of the random forest. The original dataset is
divided into 10 sets, and each time we use one set as the test
set and the rest as the training set to build random forest. Then
we average the prediction accuracy of the ten trees to get the
final prediction accuracy. These two metrics vary according to
different number of subtrees chosen and we carry a tradeoff
between them to select a proper scale for the forest. We will
introduce the corresponding experiments in Section 5.

To get an intution about the generalization performance of
the random forest and decision trees, we implement a small
experiment to compare the prediction accuracy of them. Figure
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Fig. 6. Comparison of prediction performance between random forests and
decision trees. (a) Average prediction accuracy on LTE USA dataset. (b)
Average prediction accuracy on Wi-Fi USA dataset.

6 shows the prediction performance of decision trees and
random forest on LTE USA dataset and Wi-Fi USA dataset
respectively. The x-axis represents the minimal number of
instances (MNI) required to be at the leaf node, which is
displayed as the logrithm of 2. With this parameter being
larger, the maximal depth of the tree becomes lower, which
implicitly restricts the complexity of the model. In this way
we can compare the two methods more comprehensively. We
still utilize 10-fold cross validation to measure the average
prediction accuracy (APA). We can see random forest achieves
a better performance than decision trees when MNI is rela-
tively small, which means, the models is relatively complex.
However, when MNI becomes larger, random forest performs a
little worse than decision trees. This is because random forest
cannot fit the training data well with shallow subtrees with
randomness imported. In our work, we generate trees without
depth limit, thus random forests would naturally have a better
generalization performance than decision trees. To summarize
the forest-based method, details of the holistic algorithm is
shown in Algorithm 1.

V. EXPERIMENTS

A. Prerequisites

The basic settings of our experiments are composed by three
parts: datasets, models and experimental setup.

Datasets: To facilitate experimental analysis, we split two
sub-datasets from the MopEye dataset for experiments: LTE
USA datasets and Wi-Fi USA datasets. The former cntains all
USA’s LTE records with 391,607 samples collected from 19
operators and 604 applications. The latter contains all USA’s
Wi-Fi records with 1,144,654 samples collected from 617
operators and 1,438 applications.

Models: There are three data mining approaches we test
in the following experiment: apriori rule mining, tree-based
approach and forest-based approach. Specifically, we choose a
classical data mining approach, apriori association rule mining
algorithm, to compare with our own approaches. Apriori
algorithm is a data mining approach to extract the most relative
rules from the raw data with two parameters set: support and
confidence [13]. By trial and error, we empirically set support
as 0.01 and confidence as 0.5 to get the best performance of
apriori algorithm.
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Algorithm 1 Holistic Algorithm
Input: {t1, · · · , tN}
Output: FinalAnalysis
F inalAnalysis = φ
for each tree ti in {t1, · · · , tN} do

Rule = φ
for each node nj in ti in depth-first order do
pj = path generated by backtracking nj

pj .info = feature ranges of pj
nj .rules = rules extracted from pj .info
for each rule rm in nj .rules do
confidence(rm) = std(rm)×W (rm)× I(rm)
if rm not in Rule then
Rule.append(rm)

else
Rule(rm).confidence = confidence(rm)

end if
end for
FinalAnalysis.append(Rule)

end for
FinalAnalysis = FinalAnalysis.aggregation()

end for

Experimental Setup: We build up decision trees and
random forest with the help of machine learning tool Scikit-
Learn 0.19, which is based on Python. However, the decision
trees library of Scikit-Learn only support the spliting strategy
of oridinal features. We modify the cython source code and
recomplie the decision trees library of Scikit-Learn to support
the spliting of categorical feature as mentioned in Section 3.

We first conduct experiments to choose the proper model
scale for forest-based approach. As mentioned in Section 4,
we choose OOB score and average prediction accuracy to
determine the number of subtrees. We conduct experiments
on LTE USA dataset and Wi-Fi USA dataset respectively, and
the results are shown in Figure 7. No matter Wi-Fi or LTE, we
can see these two metrics are both tending towards stability
as the number of subtrees becomes larger than about 25. To
minimize the computation complexity, we finally choose 25
as the number of subtrees.

B. Detection of Synthetic Anomalies

First, we evaluate the proposed method by the performance
of network anomaly detection. Since the data of MopEye is
not labeled, this means that we cannot know whether the
detected network anomaly is true. In order to better verify the
effectiveness of the proposed method, we manually construct
anomaly rules with synthetic instances.

Specifically, 10 synthetic anomaly rules are introduced into
the LTE-USA dataset and Wi-Fi USA dataset respectively:
five one-dimensional anomaly rules, three two-dimensional
anomaly rules, and two three-dimensional anomaly rules. The
dimension here represents the anomaly cause. Each rule is
constructed with 300 instances, where the ratio of anomaly in-

25

(a)

25

(b)

25

(c)

25

(d)

Fig. 7. OOB score and average prediction performance under different number
of subtrees. (a) OOB score on LTE USA dataset. (b) Average prediction
accuracy on LTE USA dataset. (c) OOB score on Wi-Fi USA dataset. (d)
Average prediction accuracy on Wi-Fi USA dataset.
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(a) LTE USA with forest approach
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(b) Wi-Fi USA with forest approach
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(c) LTE USA with tree approach
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(d) Wi-Fi USA with tree approach
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(e) LTE USA with Apriori algorithm
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(f) Wi-Fi USA with Apriori algorithm

Fig. 8. Three approaches’ anomaly detection performance of synthetic
anomalies. Red bar stands for synthetic anomaly while blue bar stands for
original anomaly detected.

stances varies between 91% and 100%. All synthetic instances
are mixed with the orignial dataset.

After introducing the synthetic anomaly rules, we use the
new dataset to evaluate the network anomaly detection perfor-
mance of the above three algorithm. The experiment result is
shown in Figure 8. For each scenario, we display 20 detected
anomalies with the highest confidence. Red bar stands for
synthetic anomaly while blue bar stands for original anomaly
detected.

From above results, we can see no matter forest-based
approach or tree-based approach, could both successfully
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TABLE V
LEVENSHTEIN DISTANCE BETWEEN NOISY RESULTS AND ORIGINAL

RESULTS

Levenshtein distance Forest-based Tree-based Apriori
LTE USA 1083 1497 661

Wi-Fi USA 1316 1576 884

extract all synthetic anomalies.Apriori algorithm can only
extract the synthetic anomaly rules with high proportion of
anomaly instances. This is because apriori algorithm pays too
much attention on the proportion of anomaly instance, while
ignoring the rule’s occurrence frequency among the dataset.
Our approaches would take both anomaly proportion and
occurrence frequency into consideration. To summarize, this
experiment verify the anomaly detection effectiveness of our
approaches under the scenario of crowdsourcing, compared to
the apriori algorithm.

C. Generalization Performance

Here we define generalization performance of anomaly
detection as the similarity of rule mining results. If the rule
mining result of a certain approach can keep consistent, even
some minor changes like noise are introduced into the original
dataset, we can say this approach has good generalization
performance.

Specifically, levenshtein distance is chosen to measure the
proximity of rule mining results. Levenshtein distance is
generally defined as “the minimum number of single-character
edits (insertions, deletions or substitutions) required to change
one word into the other” [14]. First of all, top 300 rules are
selected from each rule mining result. Then we flatten the
300 rules’ feature value to form a one-dimension vector. The
vector can be viewed as a “word” while each feature value
can be treated as a “character”. Therefore, the levenshtein
distance of the two vectors can be regarded as the similarity
of the two rule mining results. The shorter the levenshtein
distance, the more similar the two results are, thus indicating
a better generalization performancer. Based on this idea, we
evaluate the generalization performance of the three anomaly
detection algorithms from two aspects: roubustness of noise
and performance of cross validation

1) Robustness of Noise: We first evaluate the generaliza-
tion performance of the three approaches by measuring the
robustness of noise. The basic idea is to introduce random
gaussian noise into the original dataset to get a new noisy
dataset. Then we calculate levenshtein distance of the two
datasets’ rule mining results. Concretely, we add gaussian
noise (Mean = 0, StandardError = 20) into the original
LTE USA dataset and Wi-Fi USA dataset respectively and
group them into instances again. The result is shown as Table
V.

We can observe that apriori algorithm has the minimal
levenshtein distance because apriori algorithm is a relatively
simple algorithm which underfits the training data, thus leading
to a good generalization performance. However, the price of

TABLE VI
LEVENSHTEIN DISTANCE BETWEEN CROSS VALIDATION RESULTS OF LTE

USA DATASET

Levenshtein distance Forest-based Tree-based Apriori
LTE USA 1 - 23 1149 1464 782
LTE USA 2 - 13 1183 1571 784
LTE USA 3 - 12 1122 1437 791

Average 1151 1491 786

TABLE VII
LEVENSHTEIN DISTANCE BETWEEN CROSS VALIDATION RESULTS OF

WI-FI USA DATASET

Levenshtein distance Forest-based Tree-based Apriori
Wi-Fi USA 1 - 23 1315 1762 1066
Wi-Fi USA 2 - 13 1255 1679 1027
Wi-Fi USA 3 - 12 1298 1674 1073

Average 1289 1705 1055

underfitting is the poor performance on the anomaly detec-
tion, as the previous experiment shows. Although forest-based
approach has a bit smaller levenshtein distance than apriori
algorithm, it still enhances about 25 percent of generalizaion
performance compared with the tree-based approach.

2) Performance of Cross Validation: Next we evaluate the
generalization performance through 3-fold cross validation.
The reason for choosing 3-fold is to achieve the balance
between accuracy and runtime. Specifically, we shuffle the
original dataset and cut it equally into three parts. We apply
three approaches to the six datasets and get corresponding
mining rule results. Finally, levenshtein distances are derived
from the mining results of dataset-1 and dataset-23, dataset-2
and dataset-13, dataset-3 and dataset-12. We execute above
procudures on LTE USA dataset and Wi-Fi USA dataset
respectively.

The result is shown in Table VI and Table VII, which is
similar to the result of noise robustness evaluation. Apriori
algorithm has the minimum levenshtein distance. And forest-
based approach still has a shorter levenshtein distance than
tree-based approach, which leads to about 25 percent enhance-
ment on generalization performance.

D. Discussion of Experiments

From the results of experiments, we obtain the comprehen-
sive performance of our approaches and apriori algorithm.
Apriori algorithm has the best generalization performance
due to the simplicity of its model while performing much
worse as to anomaly detection. Tree-based approach gets a
good anomaly detection performance while it is too sensitive
to noise thus leading to the worst generalization perfor-
mance. Forest-based approach strikes the best balance between
anomaly detection performance and generalization perfor-
mance. While successfully detecting all synthetic anomlies,
forest-based approach also achieves about 25 percent higher
generalization performance than single tree-based approach.

VI. RELATED WORK

Traditional methods to detect network anomalies can be
classified as threshold detection, statisical analysis and wavelet
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transform. Frank [15] design an adaptive threshold detection
mechanism. [16] Based on the statistical method of General-
ized Likelihood Ratio (GLR) to detect anomalies in network
servers while the work in [17] is based on wavelet transform
for anomaly detection.

A number of specific measurement tools have been devel-
oped to do the network peformance analysis. For example, in
the field of active measurement, Ferlin et al. implemented a
bottleneck detection method for multipath transmission control
protocols [18], while Li et al. modeled the repetitive behav-
ior of network packet arrivals [19]. In the field of mobile
network monitoring applications, Mobilyzer [20], MobiePerf
[21] and MobileInsight [22] worth attentions. Since the active
measurement is too costly and the application of mobile
network monitoring is concentrated on the single device, it
is impossible to comprehensively analyze the performance of
a large-scale network.

In order to cope with the analysis of large-scale data,
machine learning methods are often adopted in the design
of network anomaly detection. Pajouh et al. utilize naive
bayes, KNN and linear discriminant analysis to build a two-
layer classification model [23]. Zhao et al. proposes a new
framework for real-time anomaly detection of network traffic
with the help of machine learning [24]. Association rule
mining algorithms are also used to locate the causes of
network performance degradation [13]. The Opprentice system
[25] performs anomaly detection by training random forests
to automatically combine traditional anomaly detectors and
automatically choose appropriate relevant parameters. [26]
uses decision trees to model the metrics of the event network,
and then manually analyzes the structural information of the
tree.

VII. CONCLUSION

In this work we propose a tree-based data mining method
for large scale network anomaly detection. We determine the
root cause of network anomaly with the help of decision
trees, which is utilized as an analysis model rather than a
prediction model. By analyzing the tree structure and tree
nodes’ information, we extract the potential cause of abnormal
RTT behavior. Moreover, we set up an evaluation criteria
called “confidence” to measure the severity of each anomaly.
To achieve a better robustness, we build random forest and
compact subtrees’ outputs to produce a generalized result.

In the furture work, we would explore the enhancement of
anomaly detection and decision. First, as to the input data,
we would enlarge the scale and coverage of crowdsourcing.
Second, as to the modeling approach, we would like to extend
the granularity of anomaly detection, e.g., extending the binary
classification to multi-classification during the labeling of
instances.
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