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Lemma 1: Under the request vector (dy,ds, . ..,dk) and caching distribution @), the traffic rate produced by our encoding
and decoding scheme I is

K
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i=1 vC[K],|v]=i °
Proof: Consider a particular bit in one of the content, termed as content 4. Since the prefetching is uniform , by symmetry
this bit has probability
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of being prefetched in the cache of any fixed user. Consider now a fixed subset of t out of K users. The probability that this

bit is prefetched at exactly those ¢ users is
(@:M)" (1 — ;M) "

Hence, the average number of bits of content ¢ that are cached at exactly those ¢ users is
F(g:M)" (1 — ¢ M)~
Since |U/{k}| =k — 1, the expected size of Vj /(1) is
F(g:M)*~ (1 — g M)F =+,
Note that, for F' large enough, the actual realization of random number of bits in V} /(%) is in the interval
F(q:M)* (1 = ¢ M)S~*4 £ o(F),
with high probability. For simplicity, the o(F’) term is ignored in the following derivation.
Consider a fixed value of s in Line 7 and a fixed subset S of cardinality s. In line 8, server sends

—F M) = gq, MK,
max Vi,u/{k} I}lea(}({(% )T (1= gqa, M) }

Traversing all subsets U of [K], the total traffic rate produced by Algorithm 1 is

K
FY > max{(ga, M) (1 — qa, M)}
i=1 vk ol=i 0"
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Lemma 2: Any request vector (dy,ds, . ..,dk) satisfying §= (a1, ag,...,ay) produces the same traffic rate (5) under the
encoding and decoding scheme T'.
Proof: We consider two requested vectors:

(di,... dm,. . dp,....dx) and (di,,....,d" =dp,...,d" =dn,... dK).

Remark that these two requested vectors satisfying request situation: §= (a1, aq,...,an) and the difference between them is
that user m and user n exchanges their requests. Factually, the different request vectors satisfying the same request situation
can be converted to each other via finite exchange. Then, we will show that, under these two requested vectors, the traffic rate
is equal.

The traffic rate under (dy,...,dm,...,dn,-..,dx) is

K
Ry(5,Q,T) = Ru(5,Q,T) + Ru(5,Q,T) + Rmn(5,Q,T) + Ry(5,Q,T).

i=1



Where

Rm(§7Qar) - Z max{(qde) ( qde)K Z+1’ max {(qd M i— 1(1 _ Qd M)K z+1}}
vC[K],|v|=i,n€v,m¢v jev/m
B (5,Q.1) = > max{(ga, M) (1 = ga, M)* 7, max {(ga, M) (1 = g0, M)},
jev/n

vC[K],|v|=t,n¢v,mev

R n(5,Q,T) = >

vC[K],|v|=t,n¢v,mev

Ry(5Q.T)= > ]egl{a;ifn}{(qde)i_l(l—qd].M)K_““l}.

max{(qd M)=H(1 = gq, M)K—i+1}

(qde)ifl(l —q4,, M)KfiJrl (Qd M)i71(1 —qa, M)Kfz#l’
max 7
j€v/n

vC[K],|v|=
The traffic rate under (d1,...,d}, ...,d;,... dr) is
ZR* 5,.Q.,T)+ R, (5,Q,T) + Ry, ,(5,Q,T) + R;(3,Q,T).
Where
Bn(5,Q.T) = ) macf (g, MYTH(1 = qa, MYS, anai {(ga, M)™H(L = g, MYSTY,
vC[K],|v|=i,n€v,m¢v jeEv/m
Bu(5,Q,1) = 2. macf (qa, M) (1 = qa, M), mane {(ga, ML — 0, M)ETT R
vC[K],|v|=i,n¢v,mev Jev/mn
(= (qa, M) =11 — qq, MK z-irl7 (qa, M)i=1(1 — qg, M)K=i+1,
Rm,n(s7 Q,T)= Z max{ max {(qde) —1(1— qde)K—i-H} ,
vC[K],|v|=i,n¢v,mev Jj€v/n
Ry(5,Q,1) = max  {(qa; M)"" (1 — qq, M)~}
@ HCU; = jev/{m,n}

Consider d;,, = d,, and d}, = d,,,, we can get

Rin(5.Q,1) = RZ(E’,Q,F),Rn(E’,Q I) =R, (5,Q,T1),
R:n,n(ga Q?F) = Rn,m(ga Q7F) = m n( Q F) R¢(§7 er) = R;(gv Q)F)
Hence,
Ry(5,Q,T) = B((5,Q,7T).
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Theorem 3: For N € N contents and K € K users each with cache size 0 < M < N.If p; < py < --- < py and
@1 < q2 < -+ < g, then

M
R™(P,Q,T) = FZ]P’ 1—(1—gM)"|.
equal if only if py = py = -+ =py and ¢1 = g2 = -+ = qn. Where P(A;) represents the probability that K users request
content 7,7+ 1,..., N, and can be calculated as

i—1
(49 = (=32 1= (1= K",
j=1 j
Proof: All request situation is divided into following N cases:
Ay o >0,a0>0,...,ay >0;
As o =0, >0,...,any > 0;

As:a1 =0,a0=0,...,ay > 0;

In the case A;, each user only request one of contents 7,7 + 1,..., N and their corresponding caching distribution satisfies
¢ < git1 < -+ < gn. Let
Qi Qit1," " 4N < i,



then the caching distribution of content ¢ + 1,7 + 2, ..., N are reduced to ¢;. Thus the traffic rate under this case is

l—qiM

K
R(4,Q0) = F ) Of(@d)" (1 = q:M) ™ = P—i= (1= (1= D))

The probability of case A; is calculated based on multiplication formula,
P(A)=P{C;-Cy---C;-Ci11---COn}

= P{Cy} - P{C3|C1} - P{ON_A|Cr - Ci - Cyay - Cn—a} - P{ONICy T+ Cipy -+ O}
K

_ 1—;2:119]- -[1—(1—p§i‘”)1.

Where

pgi—l) _ Di

. K
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Hence, the upper bound of total traffic rate is

N

R(P,Q) = 3 P4y —2M

> —ar [1 —(1- qiM)k} .
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Theorem 4: For N € N contents and K € K users each with cache size 0 < M < N.

k
R(P,Q,T) > R"*(P ZIE" 1<I£1<ZK(/€—WMM).

where P(B;) denotes the probability that K users only requests ¢ kinds of contents, which can be derived by the concept of
generating function.
Proof: Since the size of each content is identical, all request situation is divided into N cases:

By o >O,i=k‘1,0&i :O,i#k‘l;
By :a; >0, = ki, ky,a = 0,1 # ky, kg;
By :a; > 0,1 € K.

Under the case i, there are only ¢ contents are requested by all users. Consider the cut separating Vi, Vs, ..., V|;/, and
Z1,%, ..., 2. By the cut set bound [1],
li/s| R™®(B;) + kM > kli/k].

Optimizing over all possible choices of k, we obtain the lower bound of case <.

k
R™(B max (k — ) .
(Bi) = ke{l,...,min{i, K}} li/k|

Consider all cases, the average lower bound is
a k
R"(P P(B;)R" (B P(B; max (k — > .
Z ; ( )ke{l,...,min{i,K}} li/k|
|
Lemma 3: When K = w(N?) and v > 1 or K = ©(N") and v > 1, the traffic produced by encoding and decoding scheme
I" and approximate caching distribution Q' satisfies

. R¥(P,QhLT) M—¢ 1
lim < : -
K,.N—oo  RI(P) cM—c2—-c2M 1 _.=w




Proof: Consider the first case: K = w(N") and v > 1. Then, the upper bound is
M
R (P,Qf,T ZP [1— (1—qTM) }

(NfM)(i) =
SR
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1) Note that K = w(N?), there exists constant a, such that K > aN"
1
_1 N K=1
1 K-1 1 v
lim () ="y - = lim i®7T . ((v)FT.
N—oo \ p; = v N—oo
Since the ((v) is the Riemann function [2] and satisfies
li =1 1.
Jim (v )F- U >
Then,
v 1 lim YN
lim (%=1 . ((v)®=T < lim §a8"=1 < lim NaN'=T = eNooe @V —
N—oco N— oo N—oo
lim §%-T -C(U)Kl—l = lim i%-1 > lim 1%-T =1,
N— 00 N—o00 N—o00
Hence,
1 Kl—l
]\;im () =1 3

2) Note that K = w(N?), there exists constant a, such that X' > aN".

N/ wE N N N
lim 1 (> — J&EHOO (Zlm> < ]\;gnoc (Zim«H) < A;gnoo (ZNW_l) - ]\}EHOON.NiaNu_l =N,
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1= =1 =1 =1
N 1 S N i
lim Z () = lim ke > lim 11 | = N.
N—00 4 i N—oo \ 4 N—>0° ;
i=1 =1
Hence,
N 1 Kl—l
li — =N,1<¢<N. 4
> () Asis “
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Based on Holder inequality [3]
N N
(Za ) : <Zb‘»’> > Zaibu
=1 :

where p and g satisfies 1/p+1/qg=1. Leta; = i,b; = 1,p= %5 and ¢ = 1 — %, we can get
K—1 1 K—-1
N v N v N 1
T R—1 . TKTT > A .
<ZZK 1) (Zl K+1> _Zz 2N(N+1)
i=1 =1 =1
Then,



Hence, there exists A that

Jim [i ( ! ) Kll} i AC(0)N?] - N 5)
N—roo | =\ Pi
Based on equations (9)-(12), we can get
N-—M 1 M\ L P4,
g e ) = g Yo (- 5) S P ®
Consider the lower bound
N & N

k2 M
b py _ , _ Rk > , _ MY
R2(P) ZP(B’) 1<k Srmim i, K (k li/k] M) - X;P(Bz) 1<k Cmin i (k 1—Fk/i i >

=1 1=

Let s = CA%, 1 < ¢ < N, where c is a constant between 0 and 1, then

1 eM--M
1b > - .- - -7 i - .
R'(P) > i Y ;212 P(B;)

N
Remark that > i-P(B;) is the expectation for the number of different contents that K users request. To avoid the complicated
i=1

N
derivation of P(B;), we adopt the indicator function to calculate > i - P(B;).
i=1
X; = {0,1} represents that content 4 is requested by at least one user in K users’ requests, with probability
P(X;) =1—(1—p)¥.

Then, we can get

N N N
ST P(B) =Y EXi]=N->(1-p)¥
1=1 =1 i=1

Note that
N

N 1 K N 1 K N x
li 1—p)¥ =1 1-—— ) < 1 1-——— ) =1 TN < e T N,
NE)noo 1( p) Ngnoo =1 ( ZUC(U)> - Ngnoo =1 < NUC(U)) Ngnoo i:le =€

Thus,
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Based on equations (13) and (14), we can get
N
N—M 1 MK P(A)
Rub(P QT F) M |:1_)\C('U)NU(1_N) 7.21 Pi :|
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Consider the second case: K = ©(NV) and v > 1.
According a same procedure in first case, we can get
K N
N-M 1 M P(A;)
lim R (P,Q",T) = li 1- 1-— : 9
NS (P.Q".T) NS M [ AC(v)N© ( N) ~ D ®
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Hence,
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Let constant a = 1, we can get the results.
|
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Lemma 4: When K = w(NV) and v < 1 or K = O(NV) and v < 1, the traffic produced by encoding and decoding scheme

I" and approximate caching distribution QT satisfies

RYPQIT) _ M- 1
RW(P) — cM—c2—c2M 1—ev-l’
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K,N—oco

Proof: Consider the first case: K = w(/N?), v < 1 and a same procedure in Lemma 3. Then, we calculate the upper bound.

1) Note that K = w(N?), there exists constant a, such that K > aN".

.
L N -1 N 1
1\ F-1 1 N 1 &= y vl
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Hence,
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2) Note that K = w(N"), there exists constant a, such that K > aN".
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Hence, .
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3) It is same as (12), we can also find that there exists constant \,
N\ wE] K N .
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Based on equations (19)-(21), we can get
N-M 1 M\* & P4y
. ub T — 1 _ _ - — L
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Consider the lower bound N oM ) 21
lim R®(P)> lim — % %2

N—o0 N —o0

Let k = cﬁ‘, 1 <17 < N, where c is a constant between 0 and 1, then

N
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1 M- -M I 2 (-pi
LZZP(BZ) 1=
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Note that
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According to the limits lim > i7? = 2N then
N—o00 i=1 v
N
3 _ . K < v—1
i D0 -p) e
Thus, ) )
N cM—c"—c*M
3 lb > M . . _ v—1
L (19
Based on equations (22) and (23), we can get
ub(p Q. T M — % —c2M 1
fim FOPQLD) M -t =M . (17)
N—ooo  RI(P) M—c 1—ev—1
Consider the second case: K = O(N?) and v < 1.
According a same procedure in first case, we can get
K
N-M 1 M P(A;)
. ub T — 1 - - — !
i B (R.QT) = g T |-~ (1- ) SO, 19
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Lemma 5: When K = O(N?) and v > 1 or v < 1, the traffic produced by encoding and decoding scheme I" and approximate
caching distribution Q' satisfies

R"(P,QT,T) < M—c 1
KN-5co  RW(P) —cM—-—c2—c2M 1-XN~
where c is a constant between 0 and 1, ((v) denotes the riemann function.
Proof: The procedure is same as Lemma 3 and Lemma 4.
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